310 resultados para Acyclic monoterpene
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thymol is a monoterpene with proven acaricide action for several tick species. In addition to killing these ectoparasites, thymol can also reduce oviposition and egg hatch rate. However, the effects of thymol on the morphophysiology of tick ovaries are still unknown. Thus, the aim of this study was to evaluate the morphophysiological changes caused by this active principle in ovaries of Rhipicephalus sanguineus after a 6-day feeding period, through the application of morphohistochemical techniques. After the feeding period, a total of 50 females were divided into five groups and immersed in the following solutions: (I) distilled water (control), (II) 30 % ethanol (control), (III) 1.25 mg/mL thymol, (IV) 2.5 mg/mL thymol, and (V) 5.0 mg/mL thymol. The experimental groups were kept in a climatic chamber (27 +/- 1 A degrees C; RH 80 A +/- 10 %) for 5 days. After this period, morphological (hematoxylin/eosin) and histochemical (von Kossa) techniques were applied after remotion of the ovaries. The morphological results revealed large vacuoles in germ cells at different developmental stages and invaginations that represent deformations in the chorionic membrane. From the results obtained in this study, it was concluded that thymol interfered with the development of oocytes, which showed degeneration signs. The treatment containing 5.0 mg/mL thymol affected more accentuately the morphological development. Moreover, thymol also altered the calcium content of yolk granules, which generally showed an intense staining for this element.
Resumo:
The length of the post-partum anoestrous interval affects reproductive efficiency in many tropical beef cattle herds. In this study, results from genome-wide association studies (Experiment 1: GWAS) and gene expression (Experiment 2: microarray) were combined in a systems approach to reveal genetic markers, genes and pathways underlying the physiology of post-partum anoestrus in tropically adapted cattle. The microarray study measured the expression of 13,964 genes in the hypothalamus of Brahman cows. A total of 366 genes were differentially expressed (DE) in the post-partum period, when acyclic cows were compared to cows that had resumed ovarian cycles. Associated markers (P < 0.05) from a high density GWAS pointed to 2829 genes that were associated with post-partum anoestrous interval (PPAI) in two populations of beef cattle: Brahman and Tropical composite. Together the experiments provided evidence for 63 genes that are likely to influence the resumption of ovulation post-partum in tropically adapted beef cattle. Functional annotation analysis revealed that some of the 63 genes have known roles in hormonal activity, energy balance and neuronal synapse plasticity. Polymorphisms within candidate genes identified by this systems approach could have biological significance in post-partum anoestrus and help select Zebu (Bos indicus) influenced cattle with genetic potential for shorter post-partum anoestrus. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.
Resumo:
Alterations in the hypothalamic-pituitary-gonadal axis in females determine the transition from regular to irregular reproductive cycles, with loss of fertility. Stimulation of noradrenergic neurons of the anteroventral periventricular neurons (AVPV) is essential for regular reproductive cycles. Therefore, we examined the activity of neurons of the AVPV and measure the noradrenaline (NE) of acyclic rats, in constant estrus, and compared it with that of cyclic rats in estrus. Female cyclic (4-5months) and acyclic (17-18months) rats were euthanized at 10, 14, and 18h in estrus. Brains were processed for immunoreactivity to antigens related to Fos (FRA) in AVPV, and the NE was determined by HPLC-ED. Plasma concentrations of LH, FSH, E2 and P4 were determined. In the acyclic animals, plasma LH was higher but the FSH was lower. There was decreasing P4 at different times, while the E2 was constant and lower in acyclic rats. FRA-ir expression in AVPV neurons of acyclic rats as well as turnover of NE was higher when compared with cyclic group. The preliminary findings showed increased activity in AVPV neurons in aging contribute to changes in the temporal pattern of neuroendocrine signaling, compromising the accuracy of inhibitory and stimulatory effects, causing irregularity in the estrous cycle and determining reproductive senescence.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Rhodium-catalyzed asymmetric hydroboration in conjunction with directing groups can be used control relative and absolute stereochemistry. Hydroboration has the potential to create new C–C, C–O, and C–N bonds from an intermediate C–B bond with retention of stereochemistry. Desymmetrization resulting in the loss of one or more symmetry elements can give rise to molecular chirality, i.e., the conversion of a prochiral molecule to one that is chiral. Unsaturated amides and esters hold the potential for two-point binding to the rhodium catalyst and have been shown to direct the regiochemistry and impact stereochemistry in asymmetric hydroborations of acyclic β,γ-unsaturated substrates. In the present study, the pendant amide functionality directs the hydroboration cis in the cyclic substrates studied; the corresponding ester substrates do so to a lesser extent. The enantioselectivity is determined by regioselective addition to the re or si site of the rhodium-complexed alkene. The effect of catalyst, ligand and borane on the observed diastereoselectivity and enantioselectivity for a variety of cyclopentenyl ester and amide substrates is discussed.
Resumo:
The hexameric purine nucleoside phosphorylase from Bacillus subtilis (BsPNP233) displays great potential to produce nucleoside analogues in industry and can be exploited in the development of new anti-tumor gene therapies. In order to provide structural basis for enzyme and substrates rational optimization, aiming at those applications, the present work shows a thorough and detailed structural description of the binding mode of substrates and nucleoside analogues to the active site of the hexameric BsPNP233. Here we report the crystal structure of BsPNP233 in the apo form and in complex with 11 ligands, including clinically relevant compounds. The crystal structure of six ligands (adenine, 2'deoxyguanosine, aciclovir, ganciclovir, 8-bromoguanosine, 6-chloroguanosine) in complex with a hexameric PNP are presented for the first time. Our data showed that free bases adopt alternative conformations in the BsPNP233 active site and indicated that binding of the co-substrate (2'deoxy) ribose 1-phosphate might contribute for stabilizing the bases in a favorable orientation for catalysis. The BsPNP233-adenosine complex revealed that a hydrogen bond between the 5' hydroxyl group of adenosine and Arg(43*) side chain contributes for the ribosyl radical to adopt an unusual C3'-endo conformation. The structures with 6-chloroguanosine and 8-bromoguanosine pointed out that the Cl-6 and Br-8 substrate modifications seem to be detrimental for catalysis and can be explored in the design of inhibitors for hexameric PNPs from pathogens. Our data also corroborated the competitive inhibition mechanism of hexameric PNPs by tubercidin and suggested that the acyclic nucleoside ganciclovir is a better inhibitor for hexameric PNPs than aciclovir. Furthermore, comparative structural analyses indicated that the replacement of Ser(90) by a threonine in the B. cereus hexameric adenosine phosphorylase (Thr(91)) is responsible for the lack of negative cooperativity of phosphate binding in this enzyme.
Resumo:
Essential oils of ripe fruits from Schinus terebinthifolius (Anacardiaceae), obtained using a pilot extractor and a Clevenger apparatus were chemically characterized. Due the high amount of (-)-alpha-pinene in both oils, this monoterpene was tested against the protozoan parasite Trypanosoma cruzi, showing a moderate potential (IC50 63.56 mu g/mL) when compared to benznidazole (IC50 43.14 mu g/mL). Otherwise, (-)-alpha-pinene oxide did not showed anti-trypanosomal activity (IC50 > 400 mu g/mL) while (-)-pinane showed an IC50 of 56.50 mu g/mL. The obtained results indicated that the epoxydation of a-pinene results to the loss of the anti-parasitic activity while its hydrogenation product, contributed slightly to the increased activity.
Resumo:
Boiling points (T-B) of acyclic alkynes are predicted from their boiling point numbers (Y-BP) with the relationship T-B(K) = -16.802Y(BP)(2/3) + 337.377Y(BP)(1/3) - 437.883. In turn, Y-BP values are calculated from structure using the equation Y-BP = 1.726 + A(i) + 2.779C + 1.716M(3) + 1.564M + 4.204E(3) + 3.905E + 5.007P - 0.329D + 0.241G + 0.479V + 0.967T + 0.574S. Here A(i) depends on the substitution pattern of the alkyne and the remainder of the equation is the same as that reported earlier for alkanes. For a data set consisting of 76 acyclic alkynes, the correlation of predicted and literature T-B values had an average absolute deviation of 1.46 K, and the R-2 of the correlation was 0.999. In addition, the calculated Y-BP values can be used to predict the flash points of alkynes.
Resumo:
Gas-phase reactions of model carbosulfonium ions (CH3-S+?=?CH2; CH3CH2-S+?=?CH2 and Ph-S+?=?CH2) and an O-analogue carboxonium ion (CH3-O+?=?CH2) with acyclic (isoprene, 1,3-butadiene, methyl vinyl ketone) and cyclic (1,3-cyclohexadiene, thiophene, furan) conjugated dienes were systematically investigated by pentaquadrupole mass spectrometry. As corroborated by B3LYP/6-311?G(d,p) calculations, the carbosulfonium ions first react at large extents with the dienes forming adducts via simple addition. The nascent adducts, depending on their stability and internal energy, react further via two competitive channels: (1) in reactions with acyclic dienes via cyclization that yields formally [4?+?2+] cycloadducts, or (2) in reactions with the cyclic dienes via dissociation by HSR loss that yields methylenation (net CH+ transfer) products. In great contrast to its S-analogues, CH3-O+?=?CH2 (as well as C2H5-O+?=?CH2 and Ph-O+?=?CH2 in reactions with isoprene) forms little or no adduct and proton transfer is the dominant reaction channel. Isomerization to more acidic protonated aldehydes in the course of reaction seems to be the most plausible cause of the contrasting reactivity of carboxonium ions. The CH2?=?CH-O+?=?CH2 ion forms an abundant [4?+?2+] cycloadduct with isoprene, but similar to the behavior of such alpha,beta-unsaturated carboxonium ions in solution, seems to occur across the C?=?C bond. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Essential oils of ripe fruits from Schinus terebinthifolius (Anacardiaceae), obtained using a pilot extractor and a Clevenger apparatus were chemically characterized. Due the high amount of (-)- α-pinene in both oils, this monoterpene was tested against the protozoan parasite Trypanosoma cruzi, showing a moderate potential (IC50 63.56 µg/mL) when compared to benznidazole (IC50 43.14 µg/mL). Otherwise, (-)- α-pinene oxide did not showed anti-trypanosomal activity (IC50 > 400 µg/mL) while (-)-pinane showed an IC50 of 56.50 µg/mL. The obtained results indicated that the epoxydation of α-pinene results to the loss of the anti-parasitic activity while its hydrogenation product, contributed slightly to the increased activity.