858 resultados para 24-Ethylcholest-5-en-3beta-ol flux


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New Testament has special t.p.: El Nuevo Testamento de Nuestro Señor Jesucristo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to assess whether the oxygen-minimum zone (OMZ) in the Arabian sea has an effect on the preservation and composition of organic matter in surface sediments we investigated samples from three different transects on the Pakistan continental margin across the OMZ. In addition to determining the total amount of organic carbon (TOC), we analyzed the extractable lipids by gas chromatography, combined gas chromatography/mass spectrometry, and compound-specific stable carbon isotope measurements. The extractable lipids are dominated by marine organic matter as indicated by the abundance of lipids typical of marine biota and by the bulk and molecular isotopic composition. Sediments from within the OMZ are enriched in organic carbon and in several extractable lipids (i.e. phytol, n-alcohols, total sterols, n-C35 alkane) relative to stations above and below this zone. Other lipid concentrations, such as those of total n-fatty acids and total n-alkanes fail to show any relation to the OMZ. Only a weak correlation of TOC with mineral surface area was found in sediments deposited within the OMZ. In contrast, sediments from outside the OMZ do not show any relationship between TOC and surface area. Among the extractable lipids, only the n-alkane concentration is highly correlated with surface area in sediments from the Hab and Makran transects. In sediments from outside the OMZ, the phytol and sterol concentrations are also weakly correlated with mineral surface area. The depositional environment of the Indus Fan offers the best conditions for an enhanced preservation of organic matter. The OMZ, together with the undisturbed sedimentation at moderate rates, seems to be mainly responsible for the high TOC values in this area. Overall, the type of organic matter and its lability toward oxic degradation, the mineral surface area, the mineral composition, and possibly the secondary productivity by (sedimentary) bacteria also appear to have an influence on organic matter accumulation and composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free and ester-bound lipid biomarkers were analysed in oxidised and unoxidised parts of four distinct turbidites from the Madeira Abyssal Plain (MAP), which contained 1 to 2% organic carbon homogeneously distributed throughout the turbidites at the time they were deposited. These turbidites are well suited to study the effects of oxic degradation on lipid biomarkers without the complicating influence of varying organic matter sources, sedimentation rates, or bioturbation. One sample from the oxidised turbidite was compared with two samples from the unoxidised part of each turbidite. Postdepositional oxic degradation decreased concentrations of biomarkers by several orders of magnitude. The ester-bound lipids were degraded to a far lesser extent than their free counterparts were. The extent of degradation of different compounds differed substantially. Within a specific class of biomarkers, degradation also took place to a different extent, altering their distributions. This study shows that oxic degradation of the organic matter may have a profound effect on the biomarker fingerprint and may result in a severe bias in, for example, the interpretation of organic matter sources and the estimation of the palaeoproductivity of specific groups of phytoplankton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis de Administraci?n de Empresas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study identifies and analyzes the problems of academic and argumentative writing in third semester students of the Bachelor of Foreign Languages at the Universidad del Valle, in order to determine which are the most common difficulties arisen in the process of writing. Formal aspects of language and rhetorical elements will be analyzed in the written productions of students. This is a qualitative ethnographic study that aims to determine how the relationship between the pedagogical intervention, classroom interactions and classroom activities in the course of Composition II, help to overcome these difficulties. The research shows that students have many difficulties in the academic writing as the use of an appropriate lexical, cohesion between paragraphs of a text, use of punctuation, citation and conjugation of verbs. In relation to the construction of the argument, it was found problems in students? texts: students fail in prevailing an argumentative sequence, there is not an approach and continuation of a thesis throughout the text, there is no consistency between the thesis and the arguments developed throughout the production, problems in the use of rebuttals and backings in the argumentation. In addition to these, and although they are not the most common problems, interference of words from a foreign language (English or French) and orality marks were found in the students? argumentative essays. Finally, this work demonstrates that educational intervention and classroom interactions help to improve the different versions of the written productions, though, some problems remain unsolved at the end of the intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, biodiesel was produced from castor oil that was a byproduct glycerin. The molar ratio between oil and alcohol, as well as the use of (KOH) catalyst to provide the chemical reaction is based on literature. The best results were obtained using 1 mol of castor oil (260g) to 3 moles of methyl alcohol (138g), using 1.0% KOH as catalyst at a temperature of 260 ° C and shaken at 120 rpm. The oil used was commercially available, the process involves the reaction of transesterification of a vegetable oil with methyl alcohol. The product of this reaction is an ester, biodiesel being the main product and the glycerin by-product which has undergone treatment for use as raw material for the production of allyl alcohol. The great advantage of the use of glycerin to obtain allyl alcohol is that its use eliminates the large amount of waste of the biodiesel and various forms of insult to the environment. The reactions for the formation of allyl alcohol was conducted from formic acid and glycerin in a ratio 1/1, at a temperature of 260oC in a heater blanket, being sprayed by a spiral condenser for a period of 2 hours and the product obtained contains mostly the allylic alcohol .. The monitoring of reactions was performed by UV-Visible Spectrophotometer: FTIR Fourier transform, the analysis showed that these changes occur spectrometer indicating the formation of the product allylic alcohol (prop-2-en-1-ol) in the presence of water, This alcohol was appointed Alcohol GL. The absorption bands confirms that the reaction was observed in (υ C = C) 1470 -1600 cm -1 and (υ CO), 3610-3670 attributed to C = C groups and OH respectively. The thermal analysis was carried out in a thermogravimetric analyzer SDT Q600, where the mass and temperature are displayed against time, that allows checking the approximate rate of heating. The innovative methodology developed in the laboratory (LABTAM, UFRN), was able to treat the glycerine produced by transesterification of castor oil and used as raw material for production of allyl alcohol, with a yield of 80%, of alcohol, the same is of great importance in the manufacture of polymers, pharmaceuticals, organic compounds, herbicides, pesticides and other chemicals

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to develop and make good use of Nitraria tangutorum Bobr. in Qinghai-Tibetan Plateau for its ecological and medicinal values, the seed oil was extracted by SFE-CQ2 and the chemical constituents was analyzed by GC/MS. The component relative contents were determined by area nomalization. 28 components were separated from the extracts of SFE-CQj and 12 of them, which accounted for 85.99% were identified. They were(Z, Z)-9, 12-octadecadienoic acid (linoleic acid), bicyclo[ 10. 1. 0] tridec-1-ene, 7-pentadecyne, gamma-sitosterol, gamma-tocopherol, 1, -8,Z-10-hexadecatriene,9,12-octadecadienal, 24-methyl-5-cholestene-3-ol,(Z)-9,17-octadecadienal, stigmastan-3,5-dien, eicosane and so on. Among them, the relative content of (Z, Z)-9,12-octadecadienoic acid is the highest, accounting for 65.85% of the total area. It is concluded that N. tangutorum Bobr. seed oil is a rich source of linoleic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have demonstrated that the oxysterol binding protein (OSBP) acts as a phosphatidylinositol phosphate (PIP)-sterol exchanger at membrane contact sites (MCS) of the endoplasmic reticulum (ER) and Golgi. OSBP is known to pick up phosphatidylinositol-4-phosphate (PI(4)P) from the ER, transfer it to the trans-Golgi in exchange for a cholesterol molecule that is then transferred from the trans-Golgi to the ER. Upon further examination of this pathway by Ridgway et al. (1), it appeared that phosphorylation of OSBP played a role in the localization of OSBP. The dephosphorylation state of OSBP was linked to Golgi localization and the depletion of cholesterol at the ER. To mimic the phosphorylated state of OSBP, the mutant OSBP-S5E was designed by Ridgway et al. (1). The lipid and sterol recognition by wt-OSBP and its phosphomimic mutant OSBP-S5E were investigated using immobilized lipid bilayers and dual polarization interferometry (DPI). DPI is a technique in which the protein binding affinity to immobilized lipid bilayers is measured and the binding behavior is examined through real time. Lipid bilayers containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and varying concentrations of PI(4)Ps or sterols (cholesterol or 25-hydroxycholesterol) were immobilized on a silicon nitride chip. It was determined that wt-OSBP binds differently to PI(4)P-containing bilayers compared to OSBP-S5E. The binding behavior suggested that wt-OSBP extracts PI(4)P and the change in the binding behavior, in the case of OSBP-S5E, suggested that the phosphorylation of OSBP may prevent the recognition and/or extraction of PI(4)P. In the presence of sterols, the overall binding behavior of OSBP, regardless of phosphorylation state, was fairly similar. The maximum specific bound mass of OSBP to sterols did not differ as the concentration of sterols increased. However, comparing the maximum specific bound mass of OSBP to cholesterol with oxysterol (25-hydroxycholesterol), OSBP displayed nearly a 2-fold increase in bound mass. With the absence of the wt-OSBP-PI(4)P binding behavior, it can be speculated that the sterols were not extracted. In addition, the binding behavior of OSBP was further tested using a fluorescence based binding assay. Using 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (22-NBD cholesterol), wt-OSBP a one site binding dissociation constant Kd, of 15 ± 1.4 nM was determined. OSBP-S5E did not bind to 22-NBD cholesterol and Kd value was not obtained.