926 resultados para 1 Corinthians 8:1-13
Resumo:
We combine multi-wavelength data in the AEGIS-XD and C-COSMOS surveys to measure the typical dark matter halo mass of X-ray selected active galactic nuclei (AGN) [L_X(2–10 keV) > 10^42 erg s^− 1] in comparison with far-infrared selected star-forming galaxies detected in the Herschel/PEP survey (PACS Evolutionary Probe; L_IR > 10^11 L_⊙) and quiescent systems at z ≈ 1. We develop a novel method to measure the clustering of extragalactic populations that uses photometric redshift probability distribution functions in addition to any spectroscopy. This is advantageous in that all sources in the sample are used in the clustering analysis, not just the subset with secure spectroscopy. The method works best for large samples. The loss of accuracy because of the lack of spectroscopy is balanced by increasing the number of sources used to measure the clustering. We find that X-ray AGN, far-infrared selected star-forming galaxies and passive systems in the redshift interval 0.6 < z < 1.4 are found in haloes of similar mass, log M_DMH/(M_⊙ h^−1) ≈ 13.0. We argue that this is because the galaxies in all three samples (AGN, star-forming, passive) have similar stellar mass distributions, approximated by the J-band luminosity. Therefore, all galaxies that can potentially host X-ray AGN, because they have stellar masses in the appropriate range, live in dark matter haloes of log M_DMH/(M_⊙ h^−1) ≈ 13.0 independent of their star formation rates. This suggests that the stellar mass of X-ray AGN hosts is driving the observed clustering properties of this population. We also speculate that trends between AGN properties (e.g. luminosity, level of obscuration) and large-scale environment may be related to differences in the stellar mass of the host galaxies.
Resumo:
Tese de mestrado, Biologia Molecular e Genética, Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Forty indurated sediment samples from Site 516 were studied to determine the cause of acoustic anisotropy in carbonate- bearing deep-sea sediments. Recovered from sub-bottom depths between 388 and 1222 m, the samples have properties exhibiting the following ranges: wet-bulk density, 1.90-2.49 g/cm3; fractional porosity, 0.45-0.14; carbonate content, 33-88%; compressional-wave velocity (at 0.1 kbar pressure), 1.87-4.87 km/s; and anisotropy, 1-13%. Velocities were measured in three mutually perpendicular directions through the same specimen in 29 of the 40 samples studied. Calcite fabric has been estimated by X-ray pole figure goniometry. The major findings of this study are: 1) Carbonate-bearing deep-sea sediments may be regarded as transversely isotropic media with symmetry axes normal to bedding. 2) Calcite c-axes are weakly concentrated in a direction perpendicular to bedding, but the preferred orientation of calcite does not contribute significantly to velocity anisotropy. 3) The properties of bedded and unbedded samples are distinctly different. Unbedded sediments exhibit low degrees of acoustic anisotropy (1-5%). By contrast, bedded samples show higher degrees of anisotropy (to 13%), and anisotropy increases markedly with depth of burial. Thus, bedding must be regarded as the principal cause of acoustic anisotropy in calcareous, deep-sea sediments.