988 resultados para web surveys
Resumo:
This paper investigates in how to utilize ICT and Web 2.0 technologies and e-democracy software for policy decision-making. It introduces a cutting edge decision-making system that integrates the practice of e-petitions, e-consultation, e-rulemaking, e-voting, and proxy voting. The paper demonstrates how under precondition of direct democracy through the use this system the collective intelligence (CI) of a population would be gathered and used throughout the policy process.
Resumo:
This paper is a summary of a PhD thesis proposal. It will explore how the Web 2.0 platform could be applied to enable and facilitate the large-scale participation, deliberation and collaboration of both governmental and non-governmental actors in an ICT supported policy process. The paper will introduce a new democratic theory and a Web 2.0 based e-democracy platform, and demonstrate how different actors would use the platform to develop and justify policy issues.
Resumo:
Information overload has become a serious issue for web users. Personalisation can provide effective solutions to overcome this problem. Recommender systems are one popular personalisation tool to help users deal with this issue. As the base of personalisation, the accuracy and efficiency of web user profiling affects the performances of recommender systems and other personalisation systems greatly. In Web 2.0, the emerging user information provides new possible solutions to profile users. Folksonomy or tag information is a kind of typical Web 2.0 information. Folksonomy implies the users‘ topic interests and opinion information. It becomes another source of important user information to profile users and to make recommendations. However, since tags are arbitrary words given by users, folksonomy contains a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise makes it difficult to profile users accurately or to make quality recommendations. This thesis investigates the distinctive features and multiple relationships of folksonomy and explores novel approaches to solve the tag quality problem and profile users accurately. Harvesting the wisdom of crowds and experts, three new user profiling approaches are proposed: folksonomy based user profiling approach, taxonomy based user profiling approach, hybrid user profiling approach based on folksonomy and taxonomy. The proposed user profiling approaches are applied to recommender systems to improve their performances. Based on the generated user profiles, the user and item based collaborative filtering approaches, combined with the content filtering methods, are proposed to make recommendations. The proposed new user profiling and recommendation approaches have been evaluated through extensive experiments. The effectiveness evaluation experiments were conducted on two real world datasets collected from Amazon.com and CiteULike websites. The experimental results demonstrate that the proposed user profiling and recommendation approaches outperform those related state-of-the-art approaches. In addition, this thesis proposes a parallel, scalable user profiling implementation approach based on advanced cloud computing techniques such as Hadoop, MapReduce and Cascading. The scalability evaluation experiments were conducted on a large scaled dataset collected from Del.icio.us website. This thesis contributes to effectively use the wisdom of crowds and expert to help users solve information overload issues through providing more accurate, effective and efficient user profiling and recommendation approaches. It also contributes to better usages of taxonomy information given by experts and folksonomy information contributed by users in Web 2.0.
Resumo:
As a model for knowledge description and formalization, ontologies are widely used to represent user profiles in personalized web information gathering. However, when representing user profiles, many models have utilized only knowledge from either a global knowledge base or a user local information. In this paper, a personalized ontology model is proposed for knowledge representation and reasoning over user profiles. This model learns ontological user profiles from both a world knowledge base and user local instance repositories. The ontology model is evaluated by comparing it against benchmark models in web information gathering. The results show that this ontology model is successful.
Resumo:
This paper reports an empirical study on measuring transit service reliability using the data from a Web-based passenger survey on a major transit corridor in Brisbane, Australia. After an introduction of transit service reliability measures, the paper presents the results from the case study including study area, data collection, and reliability measures obtained. This includes data exploration of boarding/arrival lateness, in-vehicle time variation, waiting time variation, and headway adherence. Impacts of peak-period effects and separate operation on service reliability are examined. Relationships between transit service characteristics and passenger waiting time are also discussed. A summary of key findings and an agenda of future research are offered in conclusions.
Resumo:
This chapter sets out to identify related issues surrounding the use of Information and Computer Technology (ICT) in developing relationships between local food producers and consumers (both individuals and businesses). Three surveys were conducted in South- East Wales to consider the overlapping issues. The first concerned the role of ICT in relationships between farmers’ market (FMs) vendors and their traditional customers. The second survey examined potential new markets for farmers in the propensity of restaurants and hotels to buy locally, the types and sources of purchases made and the modes of advertising of these businesses. The final survey focused on the potential to expand local web- based selling of farmers’ produce in the future, by examining the potential market of high ICT- use small hotels. Despite the development of tailored ICT facilities, farmers’ market vendors and current individual customers are antipathetic to them. In addition, whilst there is a desire for more local produce particularly amongst independent local restaurants and hotels, this has not been capitalised upon and there is much work to be done even amongst high ICT-use small hotels, to expand the range and scope of farmers’ markets. This raises the need for creation and utilisation of enhanced logistics, payment and marketing management capacity available through a web- based presence, linked to promotion of FMs in business- to- business (B2B) links with local restaurants and hotels. This linked quantitative research highlights the potential value in substantial development of both web portals and supporting logistics to exploit this potential in the future.
Resumo:
The interoperable and loosely-coupled web services architecture, while beneficial, can be resource-intensive, and is thus susceptible to denial of service (DoS) attacks in which an attacker can use a relatively insignificant amount of resources to exhaust the computational resources of a web service. We investigate the effectiveness of defending web services from DoS attacks using client puzzles, a cryptographic countermeasure which provides a form of gradual authentication by requiring the client to solve some computationally difficult problems before access is granted. In particular, we describe a mechanism for integrating a hash-based puzzle into existing web services frameworks and analyze the effectiveness of the countermeasure using a variety of scenarios on a network testbed. Client puzzles are an effective defence against flooding attacks. They can also mitigate certain types of semantic-based attacks, although they may not be the optimal solution.
Resumo:
Most web service discovery systems use keyword-based search algorithms and, although partially successful, sometimes fail to satisfy some users information needs. This has given rise to several semantics-based approaches that look to go beyond simple attribute matching and try to capture the semantics of services. However, the results reported in the literature vary and in many cases are worse than the results obtained by keyword-based systems. We believe the accuracy of the mechanisms used to extract tokens from the non-natural language sections of WSDL files directly affects the performance of these techniques, because some of them can be more sensitive to noise. In this paper three existing tokenization algorithms are evaluated and a new algorithm that outperforms all the algorithms found in the literature is introduced.
Resumo:
Increasingly scientists are using collections of software tools in their research. These tools are typically used in concert, often necessitating laborious and error-prone manual data reformatting and transfer. We present an intuitive workflow environment to support scientists with their research. The workflow, GPFlow, wraps legacy tools, presenting a high level, interactive web-based front end to scientists. The workflow backend is realized by a commercial grade workflow engine (Windows Workflow Foundation). The workflow model is inspired by spreadsheets and is novel in its support for an intuitive method of interaction enabling experimentation as required by many scientists, e.g. bioinformaticians. We apply GPFlow to two bioinformatics experiments and demonstrate its flexibility and simplicity.
Resumo:
In cloud computing, resource allocation and scheduling of multiple composite web services is an important and challenging problem. This is especially so in a hybrid cloud where there may be some low-cost resources available from private clouds and some high-cost resources from public clouds. Meeting this challenge involves two classical computational problems: one is assigning resources to each of the tasks in the composite web services; the other is scheduling the allocated resources when each resource may be used by multiple tasks at different points of time. In addition, Quality-of-Service (QoS) issues, such as execution time and running costs, must be considered in the resource allocation and scheduling problem. Here we present a Cooperative Coevolutionary Genetic Algorithm (CCGA) to solve the deadline-constrained resource allocation and scheduling problem for multiple composite web services. Experimental results show that our CCGA is both efficient and scalable.