938 resultados para vinyl sulfides
Resumo:
In the title compound, [Cu(NCS)(2)(C5H6N2)(2)], each Cu atom is coordinated by two N atoms from two Eim (Eim = 1-vinyl-1H-imidazole) ligands and two N atoms from two isothiocyanate groups. The Cu atom adopts a square-planar geometry. The mean Cu-N(Eim) and Cu-N(NCS) distances are 1.960 (6) and 1.993 (6) angstrom, respectively.
Resumo:
Dioxygenase-catalysed trioxygenation of alkyl phenyl sulfides and alkyl benzenes yields enantiopure cis-dihydrodiol sulfoxides and triols respectively; naphthalene cis-dihydrodiol dehydrogenase-catalysed aromatisation of these diastereoisomers gives enantiopure catechols of either configuration.
Resumo:
The associated problems of bacterial biofilm formation and encrustation that may cause obstruction or blockage of urethral catheters and ureteral stents often hinders the effective use of biomaterials within the urinary tract. In this in vitro study, we have investigated the surface properties of a hydrophilic polyvinyl pyrollidone) (PVP)-coating applied to polyurethane and determined its suitability for use as a urinary tract biomaterial by comparing its lubricity and ability to resist bacterial adherence and encrustation with that of uncoated polyurethane and silicone. The PVP-coated polyurethane was significantly more hydrophilic and more lubricious than either uncoated polyurethane or silicone. Adherence of a hydrophilic Escherichia coli isolate to PVP-coated polyurethane and uncoated polyurethane was similar but significantly less than adherence to silicone. Adherence of a hydrophobic Enterococcus faecalis isolate to PVP-coated polyurethane and silicone was similar but was significantly less than adherence to uncoated polyurethane. Struvite encrustation was similar on the PVP-coated polyurethane and silicone but significantly less than on uncoated polyurethane. Furthermore, hydroxyapatite encrustation was significantly less on the PVP-coated polyurethane than on either uncoated polyurethane or silicone. The results suggest that the PVP-coating could be useful in preventing complications caused by bacterial biofilm formation and the deposition of encrustation on biomaterials implanted in the urinary tract and, therefore, warrants further evaluation. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Poly(methyl vinyl ether-co-maleic anhydride) formed films from aqueous formulations with characteristics that are ideal as a basis for producing a drug-containing bioadhesive delivery system when plasticized with a monohydroxyl functionalized plasticizer. Hence, films containing a novel plasticizer, tripropylene glycol methyl ether (TPME), maintained their adhesive strength and tensile properties when packaged in aluminized foil for extended periods of time. Films plasticized with commonly used polyhydric alcohols, such as the glycerol in this study, underwent an esterification reaction that led to polymer crosslinking, as shown in NMR studies. These revealed the presence of peaks in the ester/carbonyl region, suggesting that glyceride residue formation had been initiated. Given the polyfunctional nature of glycerol, progressive esterification would result in a polyester network and an accompanying profound alteration in the physical characteristics. Indeed, films became brittle over time with a loss of both the aqueous solubility and bioadhesion to porcine skin. In addition, a swelling index was measurable after 7 days, a property not seen with those films containing TPME. This change in bioadhesive strength and pliability was independent of the packaging conditions, rendering the films that contain glycerol as unsuitable as a basis for topical bioadhesive delivery of drug substances. Consequently, films containing TPME have potential as an alternative formulation strategy.
Resumo:
Toluene- and naphthalene-dioxygenase-catalysed sulfoxidation of nine disubstituted methylphenyl sulfides, using whole cells of Pseudomonas putida, consistently gave the corresponding enantioenriched sulfoxides. Using the P. putida UV4 mutant strain, and these substrates, differing proportions of the corresponding cis-dihydrodiol sulfides were also isolated. Evidence was found for the concomitant dioxygenase-catalysed cis-dihydroxylation and sulfoxidation of methyl paratolyl sulfide. A simultaneous stereoselective reductase-catalysed deoxygenation of (S)-methyl para-tolyl sulfoxide, led to an increase in the proportion of the corresponding cis-dihydrodiol sulfide. The enantiopurity values and absolute configurations of the corresponding cis-dihydrodiol metabolites from methyl ortho-and para-substituted phenyl sulfides were determined by different methods, including chemoenzymatic syntheses from the cis-dihydrodiol metabolites of para-substituted iodobenzenes. Further evidence was provided to support the validity of an empirical model to predict, (i) the stereochemistry of cis-dihydroxylation of para-substituted benzene substrates, and (ii) the regiochemistry of cis-dihydroxylation reactions of ortho-substituted benzenes, each using toluene dioxygenase as biocatalyst.
Resumo:
Toluene- and naphthalene-dioxygenase-catalysed oxidation of six bicyclic disulfide substrates, using whole cells of Pseudomonas putida, gave the corresponding monosulfoxides with high ee values and enantiocomplementarity, in most cases. Two alcohol-sulfoxide diastereoisomers, formed from the reaction of the (R)-1,3-benzodithiole-1-oxide metabolite with n-butyllithium and benzaldehyde, were separated and stereochemically assigned. Treatment, of enantiopure (1R,3R)-benzo-1,3-dithiole-1,3-dioxide, obtained by chemoenzymatic synthesis, with alkyllithium reagents, resulted in a novel ring-opening reaction which proceeded with inversion of configuration to yield a series of acyclic disulfoxides. (C) 2003 Elsevier Ltd. All rights reserved.