899 resultados para vector filtering
Resumo:
The effectiveness of linear matched filters for improved character discrimination in presence of random noise and poorly defined characters has been investigated. We have found that although the performance of the filter in presence of random noise is reasonably good (16 dB gain in signal-to-noise-ratio) its performance is poor when the unknown character is distorted (linear shift and rotation).
Resumo:
A new approach for the simultaneous identification of the viruses and vectors responsible for tomato yellow leaf curl disease (TYLCD) epidemics is presented. A panel of quantitative multiplexed real-time PCR assays was developed for the sensitive and reliable detection of Tomato yellow leaf curl virus-Israel (TYLCV-IL), Tomato leaf curl virus (ToLCV), Bemisia tabaci Middle East Asia Minor 1 species (MEAM1, B biotype) and B.tabaci Mediterranean species (MED, Q biotype) from either plant or whitefly samples. For quality-assurance purposes, two internal control assays were included in the assay panel for the co-amplification of solanaceous plant DNA or B.tabaci DNA. All assays were shown to be specific and reproducible. The multiplexed assays were able to reliably detect as few as 10 plasmid copies of TYLCV-IL, 100 plasmid copies of ToLCV, 500fg B.tabaci MEAM1 and 300fg B.tabaci MED DNA. Evaluated methods for routine testing of field-collected whiteflies are presented, including protocols for processing B.tabaci captured on yellow sticky traps and for bulking of multiple B.tabaci individuals prior to DNA extraction. This work assembles all of the essential features of a validated and quality-assured diagnostic method for the identification and discrimination of tomato-infecting begomovirus and B.tabaci vector species in Australia. This flexible panel of assays will facilitate improved quarantine, biosecurity and disease-management programmes both in Australia and worldwide.
Resumo:
The effectiveness of linear matched filters for improved character discrimination in presence of random noise and poorly defined characters has been investigated. We have found that although the performance of the filter in presence of random noise is reasonably good (16 dB gain in signal-to-noise-ratio) its performance is poor when the unknown character is distorted (linear shift and rotation).
Resumo:
A composition operator is a linear operator between spaces of analytic or harmonic functions on the unit disk, which precomposes a function with a fixed self-map of the disk. A fundamental problem is to relate properties of a composition operator to the function-theoretic properties of the self-map. During the recent decades these operators have been very actively studied in connection with various function spaces. The study of composition operators lies in the intersection of two central fields of mathematical analysis; function theory and operator theory. This thesis consists of four research articles and an overview. In the first three articles the weak compactness of composition operators is studied on certain vector-valued function spaces. A vector-valued function takes its values in some complex Banach space. In the first and third article sufficient conditions are given for a composition operator to be weakly compact on different versions of vector-valued BMOA spaces. In the second article characterizations are given for the weak compactness of a composition operator on harmonic Hardy spaces and spaces of Cauchy transforms, provided the functions take values in a reflexive Banach space. Composition operators are also considered on certain weak versions of the above function spaces. In addition, the relationship of different vector-valued function spaces is analyzed. In the fourth article weighted composition operators are studied on the scalar-valued BMOA space and its subspace VMOA. A weighted composition operator is obtained by first applying a composition operator and then a pointwise multiplier. A complete characterization is given for the boundedness and compactness of a weighted composition operator on BMOA and VMOA. Moreover, the essential norm of a weighted composition operator on VMOA is estimated. These results generalize many previously known results about composition operators and pointwise multipliers on these spaces.
Resumo:
This thesis consists of three articles on passive vector fields in turbulence. The vector fields interact with a turbulent velocity field, which is described by the Kraichnan model. The effect of the Kraichnan model on the passive vectors is studied via an equation for the pair correlation function and its solutions. The first paper is concerned with the passive magnetohydrodynamic equations. Emphasis is placed on the so called "dynamo effect", which in the present context is understood as an unbounded growth of the pair correlation function. The exact analytical conditions for such growth are found in the cases of zero and infinite Prandtl numbers. The second paper contains an extensive study of a number of passive vector models. Emphasis is now on the properties of the (assumed) steady state, namely anomalous scaling, anisotropy and small and large scale behavior with different types of forcing or stirring. The third paper is in many ways a completion to the previous one in its study of the steady state existence problem. Conditions for the existence of the steady state are found in terms of the spatial roughness parameter of the turbulent velocity field.
Resumo:
The stochastic filtering has been in general an estimation of indirectly observed states given observed data. This means that one is discussing conditional expected values as being one of the most accurate estimation, given the observations in the context of probability space. In my thesis, I have presented the theory of filtering using two different kind of observation process: the first one is a diffusion process which is discussed in the first chapter, while the third chapter introduces the latter which is a counting process. The majority of the fundamental results of the stochastic filtering is stated in form of interesting equations, such the unnormalized Zakai equation that leads to the Kushner-Stratonovich equation. The latter one which is known also by the normalized Zakai equation or equally by Fujisaki-Kallianpur-Kunita (FKK) equation, shows the divergence between the estimate using a diffusion process and a counting process. I have also introduced an example for the linear gaussian case, which is mainly the concept to build the so-called Kalman-Bucy filter. As the unnormalized and the normalized Zakai equations are in terms of the conditional distribution, a density of these distributions will be developed through these equations and stated by Kushner Theorem. However, Kushner Theorem has a form of a stochastic partial differential equation that needs to be verify in the sense of the existence and uniqueness of its solution, which is covered in the second chapter.
Resumo:
It is shown that the use of a coarsely quantized binary digital hologram as a matched filter on an optical computer does not degrade signal-to-noise ratio (SNR) appreciably.
Resumo:
We investigate the use of a two stage transform vector quantizer (TSTVQ) for coding of line spectral frequency (LSF) parameters in wideband speech coding. The first stage quantizer of TSTVQ, provides better matching of source distribution and the second stage quantizer provides additional coding gain through using an individual cluster specific decorrelating transform and variance normalization. Further coding gain is shown to be achieved by exploiting the slow time-varying nature of speech spectra and thus using inter-frame cluster continuity (ICC) property in the first stage of TSTVQ method. The proposed method saves 3-4 bits and reduces the computational complexity by 58-66%, compared to the traditional split vector quantizer (SVQ), but at the expense of 1.5-2.5 times of memory.
Resumo:
The subspace intersection method (SIM) provides unbiased bearing estimates of multiple acoustic sources in a range-independent shallow ocean using a one-dimensional search without prior knowledge of source ranges and depths. The original formulation of this method is based on deployment of a horizontal linear array of hydrophones which measure acoustic pressure. In this paper, we extend SIM to an array of acoustic vector sensors which measure pressure as well as all components of particle velocity. Use of vector sensors reduces the minimum number of sensors required by a factor of 4, and also eliminates the constraint that the intersensor spacing should not exceed half wavelength. The additional information provided by the vector sensors leads to performance enhancement in the form of lower estimation error and higher resolution.
Resumo:
The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.
Resumo:
We present experimental validation of a new reconstruction method for off-axis digital holographic microscopy (DHM). This method effectively suppresses the object autocorrelation,namely, the zero-order term,from holographic data,thereby improving the reconstruction bandwidth of complex wavefronts. The algorithm is based on nonlinear filtering and can be applied to standard DHM setups with realistic recording conditions.We study the robustness of the technique under different experimental configurations,and quantitatively demonstrate its enhancement capabilities on phase signals.
Resumo:
Screening and early identification of primary immunodeficiency disease (PID) genes is a major challenge for physicians. Many resources have catalogued molecular alterations in known PID genes along with their associated clinical and immunological phenotypes. However, these resources do not assist in identifying candidate PID genes. We have recently developed a platform designated Resource of Asian PDIs, which hosts information pertaining to molecular alterations, protein-protein interaction networks, mouse studies and microarray gene expression profiling of all known PID genes. Using this resource as a discovery tool, we describe the development of an algorithm for prediction of candidate PID genes. Using a support vector machine learning approach, we have predicted 1442 candidate PID genes using 69 binary features of 148 known PID genes and 3162 non-PID genes as a training data set. The power of this approach is illustrated by the fact that six of the predicted genes have recently been experimentally confirmed to be PID genes. The remaining genes in this predicted data set represent attractive candidates for testing in patients where the etiology cannot be ascribed to any of the known PID genes.