927 resultados para triple junction
Resumo:
The Fourier transforms of the collagen molecular structure have been calculated taking into consideration various side chain atoms, as well as the presence of bound water molecules. There is no significant change in the calculated intensity distribution on including the side chain atoms of non-imino-acid residues. Taking into account the presence of about two bound water molecules per tripeptide unit, the agreement with the observed x-ray pattern is slightly improved. Fourier transforms have also been calculated for the detailed molecular geometries proposed from other laboratories. It is found that there are no major differences between them, as compared to our structure, either in the positions of peak intensity or in the intensity distribution. Hence it is not possible to judge the relative merits of the various molecular geometries for the collagen triple helix from a comparison of the calculated transforms with the meagre data available from its x-ray fibre pattern. It is also concluded that the collagen molecular structure should be regarded as a somewhat flexible chain structure, capable of adapting itself to the requirements of the different side groups which occur in each local region.
Resumo:
Objectives We have investigated the effects of a multi–species probiotic preparation containing a combination of probiotic bacterial genera that included Bifidobacteria, Lactobacilli and a Streptococcus in a mouse model of high fat diet/obesity induced liver steatosis. Methods Three groups of C57B1/6J mice were fed either a standard chow or a high fat diet for 20 weeks, while a third group was fed a high fat diet for 10 weeks and then concomitantly administered probiotics for a further 10 weeks. Serum, liver and large bowel samples were collected for analysis. Results The expression of the tight junction proteins ZO-1 and ZO-2 was reduced (p < 0.05) in high fat diet fed mice compared to chow fed mice. Probiotic supplementation helped to maintain tight ZO-1 and ZO-2 expression compared with the high fat diet group (p < 0.05), but did not restore ZO-1 or ZO-2 expression compared with chow fed mice. Mice fed a high fat diet ± probiotics had significant steatosis development compared to chow fed mice (p < 0.05); steatosis was less severe in the probiotics group compared to the high fat diet group. Hepatic triglycerides concentration was higher in mice fed a high fat diet ± probiotics compared to the chow group (p < 0.05), and was lower in the probiotics group compared to the high fat diet group (p < 0.05). Compared to chow fed mice, serum glucose and cholesterol concentrations, and the activity of alanine transaminase were higher (p < 0.05), whereas serum triglyceride concentration was lower (p < 0.05) in mice fed a high fat diet ± probiotics. Conclusions Supplementation with a multi-species probiotic formulation helped to maintain tight junction proteins ZO-1 and ZO-2, and reduced hepatic triglyceride concentrations compared with a HFD alone.
Resumo:
The BeiDou system is the first global navigation satellite system in which all satellites transmit triple-frequency signals that can provide the positioning, navigation, and timing independently. A benefit of triple-frequency signals is that more useful combinations can be formed, including some extrawide-lane combinations whose ambiguities can generally be instantaneously fixed without distance restriction, although the narrow-lane ambiguity resolution (NL AR) still depends on the interreceiver distance or requires a long time to achieve. In this paper, we synthetically study decimeter and centimeter kinematic positioning using BeiDou triple-frequency signals. It starts with AR of two extrawide-lane signals based on the ionosphere-free or ionosphere-reduced geometry-free model. For decimeter positioning, one can immediately use two ambiguity-fixed extrawide-lane observations without pursuing NL AR. To achieve higher accuracy, NL AR is the necessary next step. Despite the fact that long-baseline NL AR is still challenging, some NL ambiguities can indeed be fixed with high reliability. Partial AR for NL signals is acceptable, because as long as some ambiguities for NL signals are fixed, positioning accuracy will be certainly improved.With accumulation of observations, more and more NL ambiguities are fixed and the positioning accuracy continues to improve. An efficient Kalman-filtering system is established to implement the whole process. The formulated system is flexible, since the additional constraints can be easily applied to enhance the model's strength. Numerical results from a set of real triple-frequency BeiDou data on a 50 km baseline show that decimeter positioning is achievable instantaneously.With only five data epochs, 84% of NL ambiguities can be fixed so that the real-time kinematic accuracies are 4.5, 2.5, and 16 cm for north, east, and height components (respectively), while with 10 data epochs more than 90% of NL ambiguities are fixed, and the rea- -time kinematic solutions are improved to centimeter level for all three coordinate components.
Resumo:
Carrier phase ambiguity resolution over long baselines is challenging in BDS data processing. This is partially due to the variations of the hardware biases in BDS code signals and its dependence on elevation angles. We present an assessment of satellite-induced code bias variations in BDS triple-frequency signals and the ambiguity resolutions procedures involving both geometry-free and geometry-based models. First, since the elevation of a GEO satellite remains unchanged, we propose to model the single-differenced fractional cycle bias with widespread ground stations. Second, the effects of code bias variations induced by GEO, IGSO and MEO satellites on ambiguity resolution of extra-wide-lane, wide-lane and narrow-lane combinations are analyzed. Third, together with the IGSO and MEO code bias variations models, the effects of code bias variations on ambiguity resolution are examined using 30-day data collected over the baselines ranging from 500 to 2600 km in 2014. The results suggest that although the effect of code bias variations on the extra-wide-lane integer solution is almost ignorable due to its long wavelength, the wide-lane integer solutions are rather sensitive to the code bias variations. Wide-lane ambiguity resolution success rates are evidently improved when code bias variations are corrected. However, the improvement of narrow-lane ambiguity resolution is not obvious since it is based on geometry-based model and there is only an indirect impact on the narrow-lane ambiguity solutions.
Resumo:
The paper presents a geometry-free approach to assess the variation of covariance matrices of undifferenced triple frequency GNSS measurements and its impact on positioning solutions. Four independent geometryfree/ ionosphere-free (GFIF) models formed from original triple-frequency code and phase signals allow for effective computation of variance-covariance matrices using real data. Variance Component Estimation (VCE) algorithms are implemented to obtain the covariance matrices for three pseudorange and three carrier-phase signals epoch-by-epoch. Covariance results from the triple frequency Beidou System (BDS) and GPS data sets demonstrate that the estimated standard deviation varies in consistence with the amplitude of actual GFIF error time series. The single point positioning (SPP) results from BDS ionosphere-free measurements at four MGEX stations demonstrate an improvement of up to about 50% in Up direction relative to the results based on a mean square statistics. Additionally, a more extensive SPP analysis at 95 global MGEX stations based on GPS ionosphere-free measurements shows an average improvement of about 10% relative to the traditional results. This finding provides a preliminary confirmation that adequate consideration of the variation of covariance leads to the improvement of GNSS state solutions.
Resumo:
A key challenge of wide area kinematic positioning is to overcome the effects of the varying hardware biases in code signals of the BeiDou system. Based on three geometryfree/ionosphere-free combinations, the elevation-dependent code biases are modelled for all BeiDou satellites. Results from the data sets of 30-day for 5 baselines of 533 to 2545 km demonstrate that the wide-lane (WL) integer-fixing success rates of 98% to 100% can be achieved within 25 min. Under the condition of HDOP of less than 2, the overall RMS statistics show that ionospheric-free WL single-epoch solutions achieve 24 to 50 cm in the horizontal direction. Smoothing processing over the moving window of 20 min reduces the RMS values by a factor of about 2. Considering distance-independent nature, the above results show the potential that reliable and high precision positioning services could be provided in a wide area based on a sparsely distributed ground network.
Resumo:
The boxicity of a graph G, denoted box(G), is the least integer d such that G is the intersection graph of a family of d-dimensional (axis-parallel) boxes. The cubicity, denoted cub(G), is the least dsuch that G is the intersection graph of a family of d-dimensional unit cubes. An independent set of three vertices is an asteroidal triple if any two are joined by a path avoiding the neighbourhood of the third. A graph is asteroidal triple free (AT-free) if it has no asteroidal triple. The claw number psi(G) is the number of edges in the largest star that is an induced subgraph of G. For an AT-free graph G with chromatic number chi(G) and claw number psi(G), we show that box(G) <= chi(C) and that this bound is sharp. We also show that cub(G) <= box(G)([log(2) psi(G)] + 2) <= chi(G)([log(2) psi(G)] + 2). If G is an AT-free graph having girth at least 5, then box(G) <= 2, and therefore cub(G) <= 2 [log(2) psi(G)] + 4. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
A number of studies have shown that the structure and composition of bacterial nucleoid influences many a processes related to DNA metabolism. The nucleoid-associated proteins modulate not only the DNA conformation but also regulate the DNA metabolic processes such as replication, recombination, repair and transcription. Understanding of how these processes occur in the context of Mycobacterium tuberculosis nucleoid is of considerable medical importance because the nucleoid structure may be constantly remodeled in response to environmental signals and/or growth conditions. Many studies have concluded that Escherichia coli H-NS binds to DNA in a sequence-independent manner, with a preference for A-/T-rich tracts in curved DNA; however, recent studies have identified the existence of medium- and low-affinity binding sites in the vicinity of the curved DNA. Here, we show that the M. tuberculosis H-NS protein binds in a more structure-specific manner to DNA replication and repair intermediates, but displays lower affinity for double-stranded DNA with relatively higher GC content. Notably, M. tuberculosis H-NS was able to bind Holliday junction (HJ), the central recombination intermediate, with substantially higher affinity and inhibited the three-strand exchange promoted by its cognate RecA. Likewise, E. coli H-NS was able to bind the HJ and suppress DNA strand exchange promoted by E. coli RecA, although much less efficiently compared to M. tuberculosis H-NS. Our results provide new insights into a previously unrecognized function of H-NS protein, with implications for blocking the genome integration of horizontally transferred genes by homologous and/or homeologous recombination.
Resumo:
This communication describes the voltage‐current characteristics in the breakdown region of p‐n junctions made on polycrystalline silicon of large grain size. The observed soft breakdown characteristics have been explained by taking into account the effect of curvature of the junction near the grain boundaries.
Resumo:
Wettability gradient surfaces play a significant role in control and manipulation of liquid drops. The present work deals with the analysis of water drops impacting onto the junction line between hydrophobic texture and hydrophilic smooth portions of a dual-textured substrate made using stainless steel material. The hydrophobic textured portion of the substrate comprised of unidirectional parallel groove-like and pillar-like structures of uniform dimensions. A high-speed video camera recorded the spreading and receding dynamics of impacting drops. The drop impact dynamics during the early inertia driven impact regime remains unaffected by the dual-texture feature of the substrate. A larger retraction speed of drop liquid observed on the hydrophobic portion of the substrate during the impact of low velocity drops makes the drop liquid on the higher wettability portion to advance further (secondary drop spreading). The net horizontal drop velocity towards the hydrophilic portion of the dual-textured substrate decreases with increasing drop impact velocity. The available experimental results suggest that the movement of bulk drop liquid away from the impact point during drop impact on the dual-textured substrate is larger for the impact of low inertia drops. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work a physically based analytical quantum threshold voltage model for the triple gate long channel metal oxide semiconductor field effect transistor is developed The proposed model is based on the analytical solution of two-dimensional Poisson and two-dimensional Schrodinger equation Proposed model is extended for short channel devices by including semi-empirical correction The impact of effective mass variation with film thicknesses is also discussed using the proposed model All models are fully validated against the professional numerical device simulator for a wide range of device geometries (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Recent experimental studies have shown that the Rec-A mediated homologous recombination reaction involves a triple helical intermediate, in which the third strand base forms hydrogen bonds with both the bases in the major groove of the Watson-Crick duplex. Such 'mixed' hydrogen bonds allow formation of sequence independent triplexes. DNA triple helices involving 'mixed' hydrogen bonds have been studied, using model building, molecular mechanics (MM) and molecular dynamics (MD). Models were built for a tripler comprising all four possible triplets viz., G.C*C, C.G*G, A.T*T and T.A*A. To check the stability of all the 'mixed' hydrogen bonds in such triplexes and the conformational preferences of such tripler structures, MD studies were carried out starting from two structures with 30 degrees and 36 degrees twist between the basepairs. It was observed that though the two triplexes converged towards a similar structure, the various hydrogen bonds between the WC duplex and the third strand showed differential stabilities. An MD simulation with restrained hydrogen bonds showed that the resulting structure was stable and remained close to the starting structure. These studies help us in defining stable hydrogen bond geometries involving the third strand and the WC duplex. It was observed that in the C.G*G triplets the N7 atom of the second strand is always involved in hydrogen bonding. In the G.C*C triplets, either N3 or O2 in the third strand cytosine can interchangeably act as a hydrogen bond acceptor.