856 resultados para tratamiento digital de las imágenes
Resumo:
El objetivo de este trabajo es identificar las cuatro últimas acciones motrices emitidas (golpes) por boxeadores campeones del mundo de los pesos pesados y así poder caracterizar el "Knock out" en boxeo. Para ello, hemos desarrollado una herramienta de observación que consta de cuatro criterios y 35 categorías. Para la selección de la muestra se tuvo en cuenta dos requisitos: haberse proclamado campeón del mundo del peso pesado durante el período que comprende 1921-2007 (desde Jack Dempsey hasta Ruslan Chagaev) y la disponibilidad digital de las imágenes para su análisis. Se obtuvieron datos relativos a la secuencia de acciones motrices que anteceden a la finalización de los combates en boxeo, medido a través de los últimos cuatro golpes lanzados por el ganador. Los resultados del estudio muestran que el "Knock out" en boxeo suele darse haciendo un uso mayoritario de ciertos golpes entre los contendientes, presentando diferencias significativas.
Resumo:
El proyecto pretende unificar dos herramientas básicas de la comunicación audiovisual, el vídeo y el ordenador, para multiplicar sus posibilidades educativas. Los objetivos son identificar los mecanismos y valores con los que las tecnologías audiovisuales y los medios de comunicación socializan a las personas; que los alumnos adquieran conocimientos sobre comunicación audiovisual para participar activamente en la sociedad; interpretar y producir mensajes audiovisuales, respetando formas diferentes de expresión; valorar y respetar el patrimonio audiovisual; acostumbrarse a trabajar en equipo; aprender a manejar cámaras de fotos y videocámaras digitales, y a realizar montajes digitales; y estar informados de los avances en la aplicación de nuevas tecnologías a la comunicación audiovisual. En cuanto a la metodología, el proyecto continúa una serie de actividades que ya estaban en marcha en el centro. Las sesiones con los alumnos se realizan al final de la jornada escolar y se dedican sesiones especiales en las festividades del centro. Los alumnos elaboran trabajos a los que se les aplica un tratamiento digital de imágenes fijas con Photoshop, Corel Draw y Freehand, y de imágenes en movimiento con el programa iMove. Se elaboran cinco CD-ROM con clips de animación y clips publicitarios; un panel para el 25 Aniversario del centro, con imágenes de Internet, digitalización de imágenes fijas y dibujos a partir de fotos tratadas digitalmente; dos vídeos con los clips de animación en VHS; se exhiben escenas de teatro, se graban en vídeo y se tratan digitalmente; y se elabora un vídeo de presentación del instituto a partir de secuencias pregrabadas y digitalizadas. Se incluye un CD-ROM con una muestra de algunos trabajos, como el Paseo por Madrid, que consiste en un recorrido desde el Paseo del Prado hasta la Plaza de Colón, y un reportaje que presenta la entrada al instituto..
Resumo:
Introducción: El diagnóstico de osteomielitis esternal post-esternotomía resulta difícil empleando síntomas clínicos o de laboratorio y las imágenes morfológicas orientan a sospecha más que al diagnóstico. Un diagnóstico precoz ofrece calidad de vida y el mejor tratamiento para reducir una mortalidad que oscila entre 14% y 47%. La gammagrafía con leucocitos marcados ofrece el mejor rendimiento diagnóstico para infecciones y se destaca como el patrón de oro diagnóstico. Objetivo: Identificar el desempeño y utilidad de la gammagrafía con leucocitos autólogos marcados con 99mTc-HMPAO en los estudios realizados para la evaluación de osteomielitis esternal. Materiales y métodos: Se realizó un estudio descriptivo, retrospectivo de prueba diagnóstica en la Fundación Cardioinfantil de Bogotá entre enero/2010 y mayo/2015 evaluando gammagrafías con leucocitos marcados ante la sospecha de osteomielitis posterior a esternotomía. Resultados: Se evaluaron 52 pacientes, en los que la gammagrafía con leucocitos mostró 23 pacientes (44,2%) con osteomielitis esternal, logrando una sensibilidad y especificidad del 88,46% y 100% respectivamente. El valor predictivo positivo fue de 100%, y el valor predictivo negativo fue de 89,66%. El impacto de una prueba negativa no modificó el manejo médico inicial en el 93% de los casos mientras que una prueba positiva lo modificó en el 83%. Conclusiones: La gammagrafía con leucocitos autólogos radiomarcados con 99mTc-HMPAO continúa siendo el patrón de oro de referencia no invasiva para el diagnóstico de osteomielitis, y en el caso de osteomielitis esternal se convierte en la prueba de elección pertinente en la selección de pacientes que ameritan una re-intervención quirúrgica.
Resumo:
Se conformó el primer archivo docente digital de patología específica del seno en la modalidad de mamografía a nivel nacional, el cuál permitirá el entrenamiento de radiólogos y residentes de radiología según el sistema de lectura BI-RADS, buscando la unificación de criterios y mejoría de las competencias en la interpretación de las imágenes con la finalidad de aumentar la detección temprana del carcinoma de seno
Resumo:
No publicado. Pertenece al Proyecto de Formación en Centros del curso 1998/99
Resumo:
El artículo forma parte del monográfico: La comunicación de hoy: crisol de nuevos lenguajes. Resumen de la revista
Resumo:
[ES] La detección de contornos en una imagen es un proceso fundamental para poder realizar posteriores cálculos sobre ella. Cuando la precisión es importante, se necesitan desarrollar métodos más exactos. Un objetivo de la informática aplicada al campo de la imagen médica consiste en aportar la mayor información posible al médico para ayudarle en su diagnóstico. Así por ejemplo, si consideramos una angiografía, que no es más que la fotografía de una zona de vasos sanguíneos usando rayos X, podemos observar que la detección precisa de los contornos o bordes de los vasos es un paso previo fundamental para poder estimar medidas concretas sobre la vasculatura, como por ejemplo el grosor o la curvatura de los vasos en cada píxel, lo cual permitiría dar al médico un diagnóstico más preciso.
Resumo:
El objetivo principal del proyecto es la realización de una aplicación en el programa MATLAB. En primer lugar, realizaremos un estudio teórico relativo al tema de nuestro proyecto. En nuestro caso como el tema es Imagen y Televisión, explicaremos de forma teórica la información principal acerca del Tratamiento Digital de la Imagen. Una vez conocida las técnicas principales utilizadas en el tratamiento digital, realizaremos un estudio exhaustivo en las técnicas actuales que existen acerca del análisis de imágenes. Daremos una breve explicación mostrando en qué consiste esta técnica, los diferentes pasos que se llevan a cabo en una imagen para su análisis, explicando brevemente cada unos de ellos y enumerando algunas técnicas para la realización de cada una de ellas. Tras esta primera parte, nos centraremos en las técnicas de correlación de imágenes (DIC). Explicaremos como han surgido estas técnicas, cual son sus principales conceptos, sus inicios y las ventajas e inconvenientes que tienen. Dentro de las diferentes técnicas de correlación de imágenes, explicaremos de forma detallada la correspondencia por áreas, ya que es la técnica que vamos a utilizar para la realización del proyecto. Explicaremos en qué consiste, y desarrollaremos teóricamente cual son los pasos que se deben realizar en las imágenes para realizar esta técnica. Explicaremos cual es su terminología, y cuáles son los posibles defectos que puede tener esta técnica. Finalmente, una vez estudiada la teoría, realizaremos una sencilla aplicación que nos permita evaluar y encontrar las diferencias en una secuencia de imágenes. El programa utilizado para este proyecto es MATLAB, que es un programa matemático, utilizado enormemente en el ámbito de la ingeniería. Mediante esta aplicación obtendremos dos figuras, una de ellas donde veremos los vectores de movimiento que existen entre las dos imágenes y la segunda, donde obtendremos el factor de correlación que hay entre las dos imágenes. ABSTRACT OF MY PROJECT The main objective of the project is the development of an application in MATLAB program. Firstly carry out a theoretical study on the topic of our project. In our case as the theme is Picture and Television, we explain the main information about Digital Image Processing. Once known the main techniques used in digital images, we will make a study on current techniques that exist about image analysis. We will give a brief explanation showing what this technique is, the different steps that are performed on an image for analysis, briefly explaining each of them and listing some techniques for performing each. After this first part, we will focus on the techniques of image correlation (DIC). We explain how these techniques have emerged, which are the main concepts, the beginning and the advantages and disadvantages they have. There are different image correlation techniques. We will explain in detail the correspondence areas, as it is the technique that we will use for the project. Explain what it is, which is theoretically and we develop steps that must be performed on the images for this technique. We explain what their terminology is, and what are the possible defects that may have this technique. Finally, having explored the theory images, we will make a simple application that allows us to evaluate and find differences in a sequence of images. The program used for this project is MATLAB, a mathematical program, widely used in the field of engineering. Using this application will get two figures, one where we will see the motion vectors between the two images and the second where we get the correlation factor between the two images.
Resumo:
La medicina ha evolucionado de forma que las imágenes digitales tienen un papel de gran relevancia para llevar a cabo el diagnóstico de enfermedades. Son muchos y de diversa naturaleza los problemas que pueden presentar el aparato fonador. Un paso previo para la caracterización de imágenes digitales de la laringe es la segmentación de las cuerdas vocales. Hasta el momento se han desarrollado algoritmos que permiten la segmentación de la glotis. El presente proyecto pretende avanzar un paso más en el estudio, procurando asimismo la segmentación de las cuerdas vocales. Para ello, es necesario aprovechar la información de color que ofrecen las imágenes, pues es lo que va a determinar la diferencia entre una región y otra de la imagen. En este proyecto se ha desarrollado un novedoso método de segmentación de imágenes en color estroboscópicas de la laringe basado en el crecimiento de regiones a partir de píxeles-semilla. Debido a los problemas que presentan las imágenes obtenidas por la técnica de la estroboscopia, para conseguir óptimos resultados de la segmentación es necesario someter a las imágenes a un preprocesado, que consiste en la eliminación de altos brillos y aplicación de un filtro de difusión anisotrópica. Tras el preprocesado, comienza el crecimiento de la región a partir de unas semillas que se obtienen previamente. La condición de inclusión de un píxel en la región se basa en un parámetro de tolerancia que se determina de forma adaptativa. Este parámetro comienza teniendo un valor muy bajo y va aumentando de forma recursiva hasta alcanzar una condición de parada. Esta condición se basa en el análisis de la distribución estadística de los píxeles dentro de la región que va creciendo. La última fase del proyecto consiste en la realización de las pruebas necesarias para verificar el funcionamiento del sistema diseñado, obteniéndose buenos resultados en la segmentación de la glotis y resultados esperanzadores para seguir mejorando el sistema para la segmentación de las cuerdas vocales. ABSTRACT Medicine has evolved so that digital images have a very important role to perform disease diagnosis. There are wide variety of problems that can present the vocal apparatus. A preliminary step for characterization of digital images of the larynx is the segmentation of the vocal folds. To date, some algorithms that allow the segmentation of the glottis have been developed. This project aims to go one step further in the study, also seeking the segmentation of the vocal folds. To do this, we must use the color information offered by images, since this is what will determine the difference between different regions in a picture. In this project a novel method of larynx color images segmentation based on region growing from a pixel seed is developed. Due to the problems of the images obtained by the technique of stroboscopy, to achieve optimal results of the segmentation is necessary a preprocessing of the images, which involves the removal of high brightness and applying an anisotropic diffusion filter. After this preprocessing, the growth of the region from previously obtained seeds starts. The condition for inclusion of a pixel in the region is based on a tolerance parameter, which is adaptively determined. It initially has a low value and this is recursively increased until a stop condition is reached. This condition is based on the analysis of the statistical distribution of the pixels within the grown region. The last phase of the project involves the necessary tests to verify the proper working of the designed system, obtaining very good results in the segmentation of the glottis and encouraging results to keep improving the system for the segmentation of the vocal folds.
Resumo:
El cáncer de próstata es el tipo de cáncer con mayor prevalencia entre los hombres del mundo occidental y, pese a tener una alta tasa de supervivencia relativa, es la segunda mayor causa de muerte por cáncer en este sector de la población. El tratamiento de elección frente al cáncer de próstata es, en la mayoría de los casos, la radioterapia externa. Las técnicas más modernas de radioterapia externa, como la radioterapia modulada en intensidad, permiten incrementar la dosis en el tumor mientras se reduce la dosis en el tejido sano. Sin embargo, la localización del volumen objetivo varía con el día de tratamiento, y se requieren movimientos muy pequeños de los órganos para sacar partes del volumen objetivo fuera de la región terapéutica, o para introducir tejidos sanos críticos dentro. Para evitar esto se han desarrollado técnicas más avanzadas, como la radioterapia guiada por imagen, que se define por un manejo más preciso de los movimientos internos mediante una adaptación de la planificación del tratamiento basada en la información anatómica obtenida de imágenes de tomografía computarizada (TC) previas a la sesión terapéutica. Además, la radioterapia adaptativa añade la información dosimétrica de las fracciones previas a la información anatómica. Uno de los fundamentos de la radioterapia adaptativa es el registro deformable de imágenes, de gran utilidad a la hora de modelar los desplazamientos y deformaciones de los órganos internos. Sin embargo, su utilización conlleva nuevos retos científico-tecnológicos en el procesamiento de imágenes, principalmente asociados a la variabilidad de los órganos, tanto en localización como en apariencia. El objetivo de esta tesis doctoral es mejorar los procesos clínicos de delineación automática de contornos y de cálculo de dosis acumulada para la planificación y monitorización de tratamientos con radioterapia adaptativa, a partir de nuevos métodos de procesamiento de imágenes de TC (1) en presencia de contrastes variables, y (2) cambios de apariencia del recto. Además, se pretende (3) proveer de herramientas para la evaluación de la calidad de los contornos obtenidos en el caso del gross tumor volumen (GTV). Las principales contribuciones de esta tesis doctoral son las siguientes: _ 1. La adaptación, implementación y evaluación de un algoritmo de registro basado en el flujo óptico de la fase de la imagen como herramienta para el cálculo de transformaciones no-rígidas en presencia de cambios de intensidad, y su aplicabilidad a tratamientos de radioterapia adaptativa en cáncer de próstata con uso de agentes de contraste radiológico. Los resultados demuestran que el algoritmo seleccionado presenta mejores resultados cualitativos en presencia de contraste radiológico en la vejiga, y no distorsiona la imagen forzando deformaciones poco realistas. 2. La definición, desarrollo y validación de un nuevo método de enmascaramiento de los contenidos del recto (MER), y la evaluación de su influencia en el procedimiento de radioterapia adaptativa en cáncer de próstata. Las segmentaciones obtenidas mediante el MER para la creación de máscaras homogéneas en las imágenes de sesión permiten mejorar sensiblemente los resultados de los algoritmos de registro en la región rectal. Así, el uso de la metodología propuesta incrementa el índice de volumen solapado entre los contornos manuales y automáticos del recto hasta un valor del 89%, cercano a los resultados obtenidos usando máscaras manuales para el registro de las dos imágenes. De esta manera se pueden corregir tanto el cálculo de los nuevos contornos como el cálculo de la dosis acumulada. 3. La definición de una metodología de evaluación de la calidad de los contornos del GTV, que permite la representación de la distribución espacial del error, adaptándola a volúmenes no-convexos como el formado por la próstata y las vesículas seminales. Dicha metodología de evaluación, basada en un nuevo algoritmo de reconstrucción tridimensional y una nueva métrica de cuantificación, presenta resultados precisos con una gran resolución espacial en un tiempo despreciable frente al tiempo de registro. Esta nueva metodología puede ser una herramienta útil para la comparación de distintos algoritmos de registro deformable orientados a la radioterapia adaptativa en cáncer de próstata. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como cimiento de futuros avances en el procesamiento de imagen médica en los tratamientos de radioterapia adaptativa en cáncer de próstata. Asimismo, se siguen abriendo nuevas líneas de aplicación futura de métodos de procesamiento de imágenes médicas con el fin de mejorar los procesos de radioterapia adaptativa en presencia de cambios de apariencia de los órganos, e incrementar la seguridad del paciente. I.2 Inglés Prostate cancer is the most prevalent cancer amongst men in the Western world and, despite having a relatively high survival rate, is the second leading cause of cancer death in this sector of the population. The treatment of choice against prostate cancer is, in most cases, external beam radiation therapy. The most modern techniques of external radiotherapy, as intensity modulated radiotherapy, allow increasing the dose to the tumor whilst reducing the dose to healthy tissue. However, the location of the target volume varies with the day of treatment, and very small movements of the organs are required to pull out parts of the target volume outside the therapeutic region, or to introduce critical healthy tissues inside. Advanced techniques, such as the image-guided radiotherapy (IGRT), have been developed to avoid this. IGRT is defined by more precise handling of internal movements by adapting treatment planning based on the anatomical information obtained from computed tomography (CT) images prior to the therapy session. Moreover, the adaptive radiotherapy adds dosimetric information of previous fractions to the anatomical information. One of the fundamentals of adaptive radiotherapy is deformable image registration, very useful when modeling the displacements and deformations of the internal organs. However, its use brings new scientific and technological challenges in image processing, mainly associated to the variability of the organs, both in location and appearance. The aim of this thesis is to improve clinical processes of automatic contour delineation and cumulative dose calculation for planning and monitoring of adaptive radiotherapy treatments, based on new methods of CT image processing (1) in the presence of varying contrasts, and (2) rectum appearance changes. It also aims (3) to provide tools for assessing the quality of contours obtained in the case of gross tumor volume (GTV). The main contributions of this PhD thesis are as follows: 1. The adaptation, implementation and evaluation of a registration algorithm based on the optical flow of the image phase as a tool for the calculation of non-rigid transformations in the presence of intensity changes, and its applicability to adaptive radiotherapy treatment in prostate cancer with use of radiological contrast agents. The results demonstrate that the selected algorithm shows better qualitative results in the presence of radiological contrast agents in the urinary bladder, and does not distort the image forcing unrealistic deformations. 2. The definition, development and validation of a new method for masking the contents of the rectum (MER, Spanish acronym), and assessing their impact on the process of adaptive radiotherapy in prostate cancer. The segmentations obtained by the MER for the creation of homogenous masks in the session CT images can improve significantly the results of registration algorithms in the rectal region. Thus, the use of the proposed methodology increases the volume overlap index between manual and automatic contours of the rectum to a value of 89%, close to the results obtained using manual masks for both images. In this way, both the calculation of new contours and the calculation of the accumulated dose can be corrected. 3. The definition of a methodology for assessing the quality of the contours of the GTV, which allows the representation of the spatial distribution of the error, adapting it to non-convex volumes such as that formed by the prostate and seminal vesicles. Said evaluation methodology, based on a new three-dimensional reconstruction algorithm and a new quantification metric, presents accurate results with high spatial resolution in a time negligible compared to the registration time. This new approach may be a useful tool to compare different deformable registration algorithms oriented to adaptive radiotherapy in prostate cancer In conclusion, this PhD thesis corroborates the postulated research hypotheses, and is intended to serve as a foundation for future advances in medical image processing in adaptive radiotherapy treatment in prostate cancer. In addition, it opens new future applications for medical image processing methods aimed at improving the adaptive radiotherapy processes in the presence of organ’s appearance changes, and increase the patient safety.
Resumo:
En este proyecto se han analizado distintas imágenes de fragmentos de rocas de distintas granulometrías correspondientes a una serie de voladuras de una misma cantera. Cada una de las voladuras se componen de 20 imágenes. A posteriori utilizando el programa Split Desktop en su versión 3.1, se delimitaron los fragmentos de roca de los que está compuesta la imagen, obteniéndose posteriormente la curva granulométrica correspondiente a dicha imagen. Una vez se calculan las curvas granulométricas correspondientes a cada imagen, se calcula la curva media de todas ellas, pudiéndose considerar por tanto la curva media de cada voladura. Se han utilizado las distintas soluciones del software, manual, online y automático, para realizar los análisis de dichas imágenes y a posteriori comparar sus resultados. Dichos resultados se muestran a través de una serie de gráficos y tablas que se explican con detalle para la comprensión del estudio. De dichos resultados es posible afirmar que, el tratamiento de imágenes realizado de manera online y automático por Split, desemboca en el mismo resultado, al no haber una diferencia estadística significativa. Por el contrario, el sistema manual es diferente de los otros dos, no pudiéndose afirmar cual es mejor de los dos. El manual depende del operario que trabaje las imágenes y el online de los ajustes realizados y por tanto, ambos tienen ciertas incertidumbres difíciles de solucionar. Abstract In this project, different images of rock fragments of different grain sizes corresponding to a series of blasts from the same quarry have been analyzed. To study each blast, 20 images has been used and studied with the software Split Desktop 3.1. Rock fragments from each image has been delimitated with the software, obtaining a grading curve of each one. Once these curves are calculated, the mean curve of these data set is obtained and can be considered the mean curve of each blast. Different software solutions as manual, online and automatic, has been used for the analysis of these images. Then the results has been compared between them. These results are shown through a series of graphs and tables, that are explained in detail, to enhance the understanding of the study. From these results, it can be said that the image processing with online and automatic options from Split, leads to the same result, after an statistical study. On the contrary, the manual Split mode is different from the others; however is not possible to assert what will be the best. The manual Split mode depends on the operator ability and dedication, although the online mode depends on the software settings, so therefore, both have some uncertainties that are difficult to solve.
Resumo:
En minería, la estimación de la curva granulométrica del escombro de voladura es importante para evaluar el diseño, ejecución y optimización de la misma. Para ello, actualmente se usan sistemas digitales de fotografías que obtienen dicha curva a partir de imágenes tomadas por una cámara. En este proyecto se ha analizado la fragmentación de seis voladuras realizadas en el año 2012 en la cantera “El Aljibe” situada en el término municipal de Almonacid de Toledo con un sistema automático en línea (Split Online) y con un software de otra compañía (WipFrag) que permite la edición manual de las imágenes. Han sido analizadas 120 imágenes de seis voladuras, elegidas aleatoriamente. Tras el estudio granulométrico, se observa que las curvas granulométricas obtenidas con ambos sistemas, estadísticamente, no son la misma en la mayor parte de la curva, por tanto, se analiza una posible relación entre los tamaños característicos X50 y X80, llegando a la conclusión de que ninguno de los sistemas es totalmente fiable, y es necesario calibrar los sistemas con datos de fragmentación reales obtenidos por medio de básculas. Abstract In mining, the estimate of the granulometric curve blasting debris is very important to evaluate the design, implementation and optimization of it. Currently, for the obtaining of this curves are used digital system of pictures taken by a camera. In this project, the fragmentation of six rock blasting were analyzed. The rock blastings are executed in 2012 in the quarry “El Aljibe” located in Almonacid de Toledo, with a automatic online system (Split Online) and a manual editing software (WipFrag). 120 randomly selected pictures have been analyzed. After the granulometric study, it appears that the size distribution curves obtained with both systems, statistically, are not the same, then, a possible relationship between the feature sizes X50 and X80 is analyzed, concluding that none of the systems is fully reliable, and systems must be calibrated with real data fragmentation obtained from data scales.
Resumo:
ImageJ es un programa informático de tratamiento digital de imagen orientado principalmente hacia el ámbito de las ciencias de la salud. Se trata de un software de dominio público y de código abierto desarrollado en lenguaje Java en las instituciones del National Institutes of Health de Estados Unidos. Incluye por defecto potentes herramientas para editar, procesar y analizar imágenes de casi cualquier tipo y formato. Sin embargo, su mayor virtud reside en su extensibilidad: las funcionalidades de ImageJ pueden ampliarse hasta resolver casi cualquier problema de tratamiento digital de imagen mediante macros, scripts y, especialmente, plugins programables en lenguaje Java gracias a la API que ofrece. Además, ImageJ cuenta con repositorios oficiales en los que es posible obtener de forma gratuita macros, scripts y plugins aplicables en multitud de entornos gracias a la labor de la extensa comunidad de desarrolladores de ImageJ, que los depura, mejora y amplia frecuentemente. Este documento es la memoria de un proyecto que consiste en el análisis detallado de las herramientas de tratamiento digital de imagen que ofrece ImageJ. Tiene por objetivo determinar si ImageJ, a pesar de estar más enfocado a las ciencias de la salud, puede resultar útil en el entorno de la Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación de la Universidad Politécnica de Madrid, y en tal caso, resaltar las características que pudieran resultar más beneficiosas en este ámbito y servir además como guía introductoria. En las siguientes páginas se examinan una a una las herramientas de ImageJ (versión 1.48q), su funcionamiento y los mecanismos subyacentes. Se sigue el orden marcado por los menús de la interfaz de usuario: el primer capítulo abarca las herramientas destinadas a la manipulación de imágenes en general (menú Image); el segundo, las herramientas de procesado (menú Process); el tercero, las herramientas de análisis (menú Analyze); y el cuarto y último, las herramientas relacionadas con la extensibilidad de ImageJ (menú Plugins). ABSTRACT. ImageJ is a digital image processing computer program which is mainly focused at the health sciences field. It is a public domain, open source software developed in Java language at the National Institutes of Health of the United States of America. It includes powerful built-in tools to edit, process and analyze almost every type of image in nearly every format. However, its main virtue is its extensibility: ImageJ functionalities can be widened to solve nearly every situation found in digital image processing through macros, scripts and, specially, plugins programmed in Java language thanks to the ImageJ API. In addition, ImageJ has official repositories where it is possible to freely get many different macros, scripts and plugins thanks to the work carried out by the ImageJ developers community, which continuously debug, improve and widen them. This document is a report which explains a detailed analysis of all the digital image processing tools offered by ImageJ. Its final goal is to determine if ImageJ can be useful to the environment of Escuela Tecnica Superior de Ingenierfa y Sistemas de Telecomunicacion of Universidad Politecnica de Madrid, in spite of being focused at the health sciences field. In such a case, it also aims to highlight the characteristics which could be more beneficial in this field, and serve as an introductory guide too. In the following pages, all of the ImageJ tools (version 1.48q) are examined one by one, as well as their work and the underlying mechanics. The document follows the order established by the menus in ImageJ: the first chapter covers all the tools destined to manipulate images in general (menu Image); the second one covers all the processing tools (menu Process); the third one includes analyzing tools (menu Analyze); and finally, the fourth one contains all those tools related to ImageJ extensibility (menu Plugins).
Resumo:
Ampliación de software dedicado al análisis de imágenes mediante la introducción de nuevas opciones en el procesamiento de video digital, mejoras en la interacción con el usuario. Para ello se ha estudiado el funcionamiento de la aplicación, integrando el lenguaje Python como herramienta de gestión y ejecución de la aplicación. En esta parte de la aplicación se ha integrado: - Traducción de la UI a una versión castellana. - Modificación y eliminación de cualquier filtro añadido para el procesamiento de video, no únicamente el último. - Descripciones de puntero y en la barra de estado de elementos de la aplicación. - Iconos en la barra de herramientas de los filtros añadidos más importantes. Por la otra parte, la del tratamiento digital de video, Avisynth se dispone como el eje de estudio, el cuál ejecuta sobre lenguaje de bajo nivel (C++) las operaciones pertinentes a través de librerías de enlace dinámico o *.dll. Las nuevas funcionalidades son: Convolución matricial, filtro de media adaptativa, DCT, ajustes de video generales, en formato RGB o YUV, rotaciones, cambios de perspectiva y filtrado en frecuencia. ABSTRACT. Improvement about a digital image processing software, creating new options in digital video processing or the user interaction. For this porpuse, we have integrated the application language,Python, as the tool to the application management and execution. In this part of the application has been integrated: - Translation of the UI: Spanish version. - Modifying and removing any added filter for video processing, not just the last. - Descriptions for the pointer and the status bar of the application. - New icons on the toolbar of the most important filters added. On the other hand, Avisynth was used tool for the digital video processing, which runs on low-level language (C ++) for a quickly and to improve the video operations. The new introduced filters are: Matrix Convolution, adaptive median filter, DCT, general video settings on RGB or YUV format, rotations, changes in perspective and frequency filtering.