979 resultados para transforming growth factor alpha
Resumo:
Growth factors seem to be part of a complex cellular signalling language, in which individual growth factors are the equivalents of the letters that compose words. According to this analogy, informational content lies, not in an individual growth factor, but in the entire set of growth factors and others signals to which a cell is exposed. The ways in which growth factors exert their combinatorial effects are becoming clearer as the molecular mechanisms of growth factors actions are being investigated. A number of related extracellular signalling molecules that play widespread roles in regulating development in both invertebrates and vertebrates constitute the Fibroblast Growth Factor (FGF) and type beta Transforming Growth Factor ((TGF beta). The latest research literature about the role and fate of these Growth factors and their influence in the craniofacial bone growth ad development is reviewed
Resumo:
Despite wide clinical application, the efficacy of platelet-rich plasma (PRP) for repairing bone defects and enhancing osseointegration of metal implants is still subject of debate. This study aimed to evaluate the effects of a well-defined PRP-like mixture containing platelet-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin [growth factors (GFs) + proteins] on the development of the osteogenic phenotype on titanium (Ti) in vitro. Human alveolar bone-derived osteoblastic cells were subcultured on Ti discs and exposed during the first 7 days to osteogenic medium supplemented with GFs + proteins and to osteogenic medium alone thereafter up to 14 days. Control cultures were exposed to only osteogenic medium. Dose-response experiments were carried out using rat primary calvarial cells exposed to GFs + proteins and 1:10 or 1:100 dilutions of the mixture. Treated human-derived cell cultures exhibited a significantly higher number of cycling cells at days 1 and 4 and of total cells at days 4 and 7, significantly reduced alkaline phosphatase (ALP) activity at days 4, 7, and 10, and no Alizarin red-stained areas (calcium deposits) at day 14, indicating an impairment in osteoblast differentiation. Although the 1:10 and 1:100 dilutions of the mixture restored the proliferative activity of rat-derived osteogenic cells to control levels and promoted a significant increase in ALP activity at day 10 compared with GFs + proteins, mineralized nodule formation was only observed with the 1:100 dilution (similar to 50% of the control). These results showed that a PRP-like protein mixture inhibits development of the osteogenic phenotype in both human and rat osteoblastic cell cultures grown on Ti. (J Histochem Cytochem 57:265-276, 2009)
Resumo:
Liver is unique in its capacity to regenerate in response to injury or tissue loss. Hepatocytes and other liver cells are able to proliferate and repopulate the liver. However, when this response is impaired, the contribution of hepatic progenitors becomes very relevant. Here, we present an update of recent studies on growth factors and cytokine-driven intracellular pathways that govern liver stem/progenitor cell expansion and differentiation, and the relevance of these signals in liver development, regeneration and carcinogenesis. Tyrosine kinase receptor signaling, in particular, c-Met, epidermal growth factor receptors or fibroblast growth factor receptors, contribute to proliferation, survival and differentiation of liver stem/progenitor cells. Different evidence suggests a dual role for the transforming growth factor (TGF)-β signaling pathway in liver stemness and differentiation. On the one hand, TGF-β mediates progression of differentiation from a progenitor stage, but on the other hand, it contributes to the expansion of liver stem cells. Hedgehog family ligands are necessary to promote hepatoblast proliferation but need to be shut off to permit subsequent hepatoblast differentiation. In the same line, the Wnt family and β-catenin/T-cell factor pathway is clearly involved in the maintenance of liver stemness phenotype, and its repression is necessary for liver differentiation during development. Collectively, data indicate that liver stem/progenitor cells follow their own rules and regulations. The same signals that are essential for their activation, expansion and differentiation are good candidates to contribute, under adequate conditions, to the paradigm of transformation from a pro-regenerative to a pro-tumorigenic role. From a clinical perspective, this is a fundamental issue for liver stem/progenitor cell-based therapies.
Resumo:
Treatment of murine Swiss 3T3 fibroblasts and XB/2 keratinocytes with UV-B light (302 nm) resulted in a dose-dependent inhibition of [125I] epidermal growth factor (EGF) binding. The light dose required to achieve 50% inhibition of binding in both cell types was 80–85 J/m2 Decreased [125I] platelet-derived growth factor binding was not evoked even by light doses of up to 280 J/m2 UV-B irradiation did not stimultate phosphorylation of the 80 kd protein substrate for protein kinase C. Furthermore, its effect on [125I]EGF binding was not altered as a consequence of protein kinase C down-regulation following prolonged exposure of cells to phorbol esters. These results indicate that UV-B-induced transmodulation of the epidermal growth factor receptor is a specific event mediated through a protein kinase C-indepen dent pathway. Transfer of culture medium from irradiated cells to untreated control cells showed this effect was not induced as a result of transforming growth factor α release and subsequent binding to the EGF receptor in these cells.
Resumo:
The development of the gastric mucosa is controlled by hormones, growth factors and feeding behavior. Early weaning (EW), which means the abrupt interruption of suckling, increases proliferation and differentiation in the rat gastric epithelium. Transforming growth factor alpha(TGF alpha) is secreted in the stomach, binds to the epidermal growth factor receptor( EGFR) and may control cell proliferation, differentiation and migration. Here, we investigated the influence of suckling-weaning transition on the differentiation of mucous neck cells in the stomach and its association to the expression of TGF alpha and EGFR. Fifteen-day-old Wistar rats were divided into two groups: suckling( control), in which pups were kept with the dam, and early weaning( EW), in which rats were separated from their mother and fed with hydrated powdered chow. TGF alpha and EGFR levels were increased at 18 days in EW animals compared to control ones (p<0.05). Histochemical reactions with Periodic Acid-Schiff reagent+Alcian Blue or Bandeiraea simplicifolia II lectin were used to stain the mucous neck cells and showed an increase in this cell population throughout EW, which was more pronounced at 17 days when compared to suckling pups (p<0.05). These morphological results were confirmed by RT-PCR for mucin 6. The levels of mucin 6 mRNA were higher in EW animals from the 16th to the 18th day(1-3 days post-weaning) when compared to the respective control group. Inhibition of EGFR through AG1478 administration to EW animals prevented the expansion of mucous neck cell population induced by EW (p<0.05). Therefore, early weaning up regulated TGF alpha/EGFR expression and induced differentiation of mucous neck cells. Moreover, we showed that EGFR takes part in the maturation of this cell population. We conclude that regular suckling-weaning transition is crucial to guarantee the development of the gastric mucosa. (C) 2009 International Society of Differentiation. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective. The objective of this preliminary study was to evaluate the expression of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs) and growth factors in keratocystic odontogenic tumors (KOTs). Study Design. The expression of MMPs, TIMPs, growth factors, and the extracellular signal-regulated kinase (ERK) 1/2 signaling pathway were assessed by immunohistochemistry in 15 cases of KOT and 4 cases of calcifying cystic odontogenic tumor (CCOT). Results. KOT samples expressed significantly higher amounts of MMPs, TIMPs, growth factors, epidermal growth factor receptor (EGFR), and ERK compared with CCOT samples, with the exception of MMP-2 and TIMP-1. Conclusions. MMP-9, TIMP-2, EGF and transforming growth factor alpha act together and likely regulate the proliferation and aggressiveness of KOT. ERK-1/2 serves as the transducer of signals generated by these proteins, which signal through the common receptor, EGFR. This process may be related to the increased proliferation and aggressiveness observed in KOT. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:487-496)
Resumo:
Mesenchymal stromal cells (MSCs), which reside within various tissues, are utilized in the engineering of cartilage tissue. Dexamethasone (DEX)--a synthetic glucocorticoid--is almost invariably applied to potentiate the growth-factor-induced chondrogenesis of MSCs in vitro, albeit that this effect has been experimentally demonstrated only for transforming-growth-factor-beta (TGF-β)-stimulated bone-marrow-derived MSCs. Clinically, systemic glucocorticoid therapy is associated with untoward side effects (e.g., bone loss and increased susceptibility to infection). Hence, the use of these agents should be avoided or limited. We hypothesize that the influence of DEX on the chondrogenesis of MSCs depends upon their tissue origin and microenvironment [absence or presence of an extracellular matrix (ECM)], as well as upon the nature of the growth factor. We investigated its effects upon the TGF-β1- and bone-morphogenetic-protein 2 (BMP-2)-induced chondrogenesis of MSCs as a function of tissue source (bone marrow vs. synovium) and microenvironment [cell aggregates (no ECM) vs. explants (presence of a natural ECM)]. In aggregates of bone-marrow-derived MSCs, DEX enhanced TGF-β1-induced chondrogenesis by an up-regulation of cartilaginous genes, but had little influence on the BMP-2-induced response. In aggregates of synovial MSCs, DEX exerted no remarkable effect on either TGF-β1- or BMP-2-induced chondrogenesis. In synovial explants, DEX inhibited BMP-2-induced chondrogenesis almost completely, but had little impact on the TGF-β1-induced response. Our data reveal that steroids are not indispensable for the chondrogenesis of MSCs in vitro. Their influence is context dependent (tissue source of the MSCs, their microenvironment and the nature of the growth-factor). This finding has important implications for MSC based approaches to cartilage repair.
Resumo:
Meprinα, an astacin-type metalloprotease is overexpressed in colorectal cancer cells and is secreted in a non-polarized fashion, leading to the accumulation of meprinα in the tumor stroma. The transition from normal colonocytes to colorectal cancer correlates with increased meprinα activity at primary tumor sites. A role for meprinα in invasion and metastatic dissemination is supported by its pro-angiogenic and pro-migratory activity. In the present study, we provide evidence for a meprinα-mediated transactivation of the EGFR signaling pathway and suggest that this mechanism is involved in colorectal cancer progression. Using alkaline phosphatase-tagged EGFR ligands and an ELISA assay, we demonstrate that meprinα is capable of shedding epidermal growth factor (EGF) and transforming growth factor-α (TGFα) from the plasma membrane. Shedding was abrogated using actinonin, an inhibitor for meprinα. The physiological effects of meprinα-mediated shedding of EGF and TGFα were investigated with human colorectal adenocarcinoma cells (Caco-2). Proteolytically active meprinα leads to an increase in EGFR and ERK1/2 phosphorylation and subsequently enhances cell proliferation and migration. In conclusion, the implication of meprinα in the EGFR/MAPK signaling pathway indicates a role of meprinα in colorectal cancer progression.
Resumo:
Connective tissue growth factor (CTGF) is a profibrotic protein whose systemic levels are increased in liver cirrhosis. Here, association of CTGF with stages of liver injury and complications of cirrhotic liver disease has been analyzed in patients with different aetiologies of hepatic injury. CTGF is significantly increased in portal venous serum (PVS), hepatic venous serum (HVS) and systemic venous serum (SVS) of 46 patients with liver cirrhosis compared to eight liver-healthy controls. In patients´ blood samples CTGF in HVS is about 6% higher than PVS levels indicating that CTGF produced in the liver is released to the circulation. CTGF is not associated with stages of liver cirrhosis defined by CHILD-PUGH or MELD score nor with secondary complications of portal hypertension (varices, ascites, spontaneous bacterial peritonitis). Transforming growth factor β (TGFβ) induces CTGF synthesis in hepatocytes and a positive association of systemic TGFβ1 and SVS and HVS CTGF is found. Three months after placing transjugular intrahepatic portosystemic shunt (TIPS) hepatic venous pressure gradient is reduced whereas CHILD-PUGH score, TGFβ1 and CTGF are not altered in serum of 15 patients. Current data show that the cirrhotic liver releases little CTGF but SVS, HVS and PVS CTGF levels are not associated with residual liver function and complications of cirrhosis.
Resumo:
Infection of canine footpads with the canine distemper virus (CDV) can cause massive epidermal thickening (hard pad disease), as a consequence of increased proliferation of keratinocytes and hyperkeratosis. Keratinocytes of canine footpad epidermis containing detectable CDV nucleoprotein antigen and CDV mRNA were shown previously to have increased proliferation indices. Because various proteins that play a role in the proliferation of epidermal cells are viral targets, the potential participation of such proteins in CDV-associated keratinocyte proliferation was investigated. Transforming growth factor-alpha (TGF-alpha), cell cycle regulatory proteins p21, p27 and p53, and nuclear factor (NF)-kappaB transcription factor components p50 and p65 were studied in the footpad epidermis from the following groups of dogs inoculated with CDV: group 1, consisting of seven dogs with clinical distemper and CDV in the footpad epidermis; group 2, consisting of four dogs with clinical distemper but no CDV in the footpad epidermis; group 3, consisting of eight dogs with neither clinical distemper nor CDV in the footpad epithelium. Group 4 consisted of two uninoculated control dogs. The expression of TGF-alpha, p21, p27 and p53, and p50 in the basal layer, lower and upper spinous layers, and in the granular layer did not differ statistically between CDV-positive (group 1) and CDV-negative (groups 2-4) footpad epidermis. However, there were differences in the levels of nuclear and cytoplasmic p65 expression between group 1 dogs and the other three groups. Thus, footpads from group 1 dogs had more keratinocytes containing p65 in the cytoplasm and, conversely, fewer nuclei that were positive for p65. These findings indicate that p65 translocation into the nucleus is reduced in CDV-infected footpad epidermis. Such decreased translocation of p65 may help to explain increased keratinocyte proliferation in hard pad disease and suggests interference of CDV with the NF-kappaB pathway.
Resumo:
1.--The immunomodulating agent FTY720 is a substrate for the sphingosine kinase and the phosphorylated form is able to bind to sphingosine 1-phosphate (S1P) receptors. In this study, we show that exposure of renal mesangial cells to phospho-FTY720 leads to a rapid and transient activation of several protein kinase cascades, including the mitogen- and stress-activated protein kinases. The nonphosphorylated FTY720 also increased MAPK phosphorylation, but with a reduced potency and a more delayed time course. In addition, phospho-FTY720 and FTY720 are able to increase phosphorylation of Smad proteins which are classical members of the transforming growth factor-beta (TGF-beta) signalling device, thus suggesting a crosstalk between FTY720 and TGF-beta signalling. 2.--Pretreatment with the S1P(3) receptor antagonist suramin inhibits FTY720 and phospho-FTY720-induced Smad phosphorylation, whereas pertussis toxin pretreatment, which blocks G(i/0) proteins, has no effect on Smad phosphorylation. 3.--Since TGF-beta is a potent profibrotic cytokine in mesangial cells and upregulates the connective tissue growth factor (CTGF) and collagen as important hallmarks in the fibrotic sequelae, we investigated whether FTY720 and phospho-FTY720 are able to mimic these effects of TGF-beta. Indeed, FTY720 and phospho-FTY720 markedly upregulate CTGF and collagen type IV protein expressions. In addition, the tissue inhibitor of metalloproteinase-1 is transcriptionally activated by FTY720, whereas cytokine-induced matrix metalloproteinase-9 is down-regulated by FTY720. 4.--Depletion of the TGF-beta receptor type II by the siRNA transfection technique blocks not only Smad phosphorylation but also CTGF upregulation. Similarly, Smad-4 depletion by siRNA transfection also abrogates CTGF upregulation induced by FTY720 and phospho-FTY720. 5.--In summary, our data show that FTY720 and phospho-FTY720 not only activate the Smad signalling cascade in mesangial cells, but also upregulate the expression of CTGF and collagen. These findings suggest that FTY720 may have additional effects besides the established immunomodulatory action and, importantly, a profibrotic activity has to be considered in future experimental approaches.
Gene transfer of hepatocyte growth factor by electroporation reduces bleomycin-induced lung fibrosis
Resumo:
Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar wound repair in vitro was determined using an epithelial wound repair model with HGF-transfected A549 alveolar epithelial cells. Electroporation-mediated, nonviral gene transfer of HGF in vivo was performed 7 days after bleomycin-induced lung injury in the rat. Alveolar epithelial repair in vitro was increased after transfection of wounded epithelial monolayers with a plasmid encoding human HGF, pCikhHGF [human HGF (hHGF) gene expressed from the cytomegalovirus (CMV) immediate-early promoter and enhancer] compared with medium control. Electroporation-mediated in vivo HGF gene transfer using pCikhHGF 7 days after intratracheal bleomycin reduced pulmonary fibrosis as assessed by histology and hydroxyproline determination 14 days after bleomycin compared with controls treated with the same vector not containing the HGF sequence (pCik). Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-beta1 (TGF-beta1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-beta1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.
Resumo:
Inefficient alveolar wound repair contributes to the development of pulmonary fibrosis. Hepatocyte growth factor (HGF) is a potent growth factor for alveolar type II epithelial cells (AECII) and may improve repair and reduce fibrosis. We studied whether targeted gene transfer of HGF specifically to AECII improves lung fibrosis in bleomycin-induced lung fibrosis. A plasmid encoding human HGF expressed from the human surfactant protein C promoter (pSpC-hHGF) was designed, and extracorporeal electroporation-mediated gene transfer of HGF specifically to AECII was performed 7 days after bleomycin-induced lung injury in the rat. Animals were killed 7 days after hHGF gene transfer. Electroporation-mediated HGF gene transfer resulted in HGF expression specifically in AECII at biologically relevant levels. HGF gene transfer reduced pulmonary fibrosis as assessed by histology, hydroxyproline determination, and design-based stereology compared with controls. Our results indicate that the antifibrotic effect of HGF is due in part to a reduction of transforming growth factor-β(1), modulation of the epithelial-mesenchymal transition, and reduction of extravascular fibrin deposition. We conclude that targeted HGF gene transfer specifically to AECII decreases bleomycin-induced lung fibrosis and may therefore represent a novel cell-specific gene transfer technology to treat pulmonary fibrosis.
Resumo:
INTRODUCTION During dentinogenesis, growth factors become entrapped in the dentin matrix that can later be released by demineralization. Their effect on pulpal stem cell migration, proliferation, and differentiation could be beneficial for regenerative endodontic therapies. However, precondition for success, as for conventional root canal treatment, will be sufficient disinfection of the root canal system. Various irrigation solutions and intracanal dressings are available for clinical use. The aim of this study was 2-fold: to identify a demineralizing solution suitable for growth factor release directly from dentin and to evaluate whether commonly used disinfectants for endodontic treatment will compromise this effect. METHODS Dentin disks were prepared from extracted human teeth and treated with EDTA or citric acid at different concentrations or pH for different exposure periods. The amount of transforming growth factor-β1 (TGF-β1), fibroblast growth factor 2, and vascular endothelial growth factor were quantified via enzyme-linked immunosorbent assay and visualized by gold labeling. Subsequently, different irrigation solutions (5.25% sodium hypochloride, 0.12% chlorhexidine digluconate) and intracanal dressings (corticoid-antibiotic paste, calcium hydroxide: water-based and oil-based, triple antibiotic paste, chlorhexidine gel) were tested, and the release of TGF-β1 was measured after a subsequent conditioning step with EDTA. RESULTS Conditioning with 10% EDTA at pH 7 rendered the highest amounts of TGF-β1 among all test solutions. Fibroblast growth factor 2 and vascular endothelial growth factor were detected after EDTA conditioning at minute concentrations. Irrigation with chlorhexidine before EDTA conditioning increased TGF-β1 release; sodium hypochloride had the opposite effect. All tested intracanal dressings interfered with TGF-β1 release except water-based calcium hydroxide. CONCLUSIONS Growth factors can be released directly from dentin via EDTA conditioning. The use of disinfecting solutions or medicaments can amplify or attenuate this effect.
Resumo:
Growth factors can influence lineage determination of neural crest stem cells (NCSCs) in an instructive manner, in vitro. Because NCSCs are likely exposed to multiple signals in vivo, these findings raise the question of how stem cells would integrate such combined influences. Bone morphogenetic protein 2 (BMP2) promotes neuronal differentiation and glial growth factor 2 (GGF2) promotes glial differentiation; if NCSCs are exposed to saturating concentrations of both factors, BMP2 appears dominant. By contrast, if the cells are exposed to saturating concentrations of both BMP2 and transforming growth factor β1 (which promotes smooth muscle differentiation), the two factors appear codominant. Sequential addition experiments indicate that NCSCs require 48–96 hrs in GGF2 before they commit to a glial fate, whereas the cells commit to a smooth muscle fate within 24 hr in transforming growth factor β1. The delayed response to GGF2 does not reflect a lack of functional receptors; however, because the growth factor induces rapid mitogen-activated protein kinase phosphorylation in naive cells. Furthermore, GGF2 can attenuate induction of the neurogenic transcription factor mammalian achaete-scute homolog 1, by low doses of BMP2. This short-term antineurogenic influence of GGF2 is not sufficient for glial lineage commitment, however. These data imply that NCSCs exhibit cell-intrinsic biases in the timing and relative dosage sensitivity of their responses to instructive factors that influence the outcome of lineage decisions in the presence of multiple factors. The relative delay in glial lineage commitment, moreover, apparently reflects successive short-term and longer-term actions of GGF2. Such a delay may help to explain why glia normally differentiate after neurons, in vivo.