912 resultados para tissue inhibitor of metalloproteinase
Resumo:
The histamine H4 receptor regulates the inflammatory response. However, it is not known whether this receptor has a functional role in human neutrophils. We found that fMLP (1 μM), but not histamine (0.1-1 μM), induced Mac-1-dependent adhesion, polarization, and degranulation (release of lactoferrin). A pretreatment of neutrophils with histamine (0.001-1 μM) or JNJ 28610244 (0.1-10 μM), a specific H4 receptor agonist, led to inhibition of degranulation. Total inhibition of degranulation was obtained with 0.1 μM histamine and 10 μM JNJ 28610244. Furthermore, such inhibition by histamine of degranulation was reversed by JNJ 7777120 and JNJ 28307474, two selective H4 receptor antagonists. However, neither histamine nor the H4 receptor agonist JNJ 28610244 prevented fMLP-induced, Mac-1-dependent adhesion, indicating that the H4 receptor may block signals emanating from Mac-1-controlling degranulation. Likewise, engagement of the H4 receptor by the selective agonist JNJ 28610244 blocked Mac-1-dependent activation of p38 MAPK, the kinase that controls neutrophil degranulation. We also show expression of the H4 receptor at the mRNA level in ultrapure human neutrophils and myeloid leukemia PLB-985 cells. We concluded that engagement of this receptor by selective H4 receptor agonists may represent a good, therapeutic approach to accelerate resolution of inflammation.
Resumo:
Background: Excessive activation of epithelial sodium channels (ENaC) contributes to CF lung pathophysiology due to the resultant dehydration of the airway surface liquid (ASL) and impaired mucociliary clearance. Regulated proteolysis of the endogenous α and γ subunits of ENaC by apical membrane-bound Channel Activating Proteases (CAPs) is a fundamental regulatory mechanism for channel activity. In the CF lung a stark imbalance between the levels of CAPs and their natural inhibitors drives the activation of normally inactive ENaC. On this basis inhibition of CAPs-ENaC signalling represents a potential therapeutic intervention. To this end we have developed a novel cell impermeable active-site directed compound (QUB-TL1) designed to inactivate key trypsin-like CAPs highly relevant in this regard. Objectives & Methods: Utilize differentiated non-CF and CF human airway epithelial cells to assess the impact of QUB-TL1 on a range of parameters including surface CAP activities, ENaC subunit processing/channel activity, ASL height and mucociliary clearance. Results: Treatment of airway epithelial cells with QUB-TL1 results in the significant downregulation of key endogenous CAP activities found to be excessively active at the surface of CF cultures. QUB-TL1-mediated CAP inhibition subsequently causes the internalisation of a pool of processed (active) ENaCγ prominent at the apical surface of CF cultures which correlates with a decline in channel activity. This downregulation of ENaC activity results in an increase in ASL height and improved mucociliary clearance in CF cells. We further find QUB-TL1 uniquely inhibits the ENaC activating enzyme furin, which is in contrast to the alternate trypsin-like CAP inhibitors camostat mesylate and aprotinin. QUB-TL1-mediated furin inhibition correlates with a reduction in neutrophil elastase-induced ENaC activation. Moreover we find QUB-TL1 treatment protects CF cultures from Pseudomonas aeruginosa exotoxin A-induced cytotoxicity. Pseudomonas aeruginosa exotoxin A is a major toxic product activated by furin and positively associated with mortality. Conclusion: The novel inhibitor (QUB-TL1) dampens CAPs-ENaC signalling which improves hydration status mucociliary clearance in CF airway epithelial cell cultures. Moreover this compound provides additional benefit by preventing Pseudomonas aeruginosa exotoxin A-induced cytotoxicity.
Resumo:
Introduction: In addition to their afferent role in detection and signalling noxious stimuli, neuropeptide-containing sensory nerves may initiate and maintain chronic inflammation in diseases such as periodontitis by an efferent process known as neurogenic inflammation. Neuropeptides are susceptible to cleavage by peptidases, and therefore, the exact location and level of expression of peptidases are major determinants of neuropeptide action. Previous studies in our laboratory showed that enzyme components of gingival crevicular fluid (GCF) from periodontitis sites selectively inactivated the neuropeptide calcitonin gene-related peptide (CGRP), known to have a role in inhibiting osteoclastic bone resorption. Objectives: The aim of this study was to design and synthesise a specific inhibitor to prevent the degradation of CGRP by components of GCF. Methods: A hydroxamate-based inhibitor with a biotinylated tag was designed to ensure selectivity for CGRP and ease of use for future purification strategies. The biotinylated peptide hydroxamate contained the P1-P4 amino acid sequence of the potential CGRP cleavage site and was synthesised by solid-phase methods using standard Fmoc chemistry. Inhibition of CGRP metabolism by GCF was determined by MALDI-mass spectrometry (MALDI-MS) using pooled GCF samples from periodontitis patients as a crude source of the CGRP-degrading enzyme. Results: MALDI-MS analysis of CGRP degradation showed almost complete inhibition in the presence of the biotinylated inhibitor. Our results showed that the rate-limiting step in the cleavage of CGRP is endopeptidase cleavage, followed by carboxypeptidase attack. Conclusion: This study demonstrates that the enzyme component of GCF responsible for the degradation of CGRP can be inhibited by a biotinylated hydroxamate modelled on a potential endopeptidase cleavage site. The biotin tag on the inhibitor will facilitate our future purification of the CGRP-cleavage enzyme using a streptavidin-agarose column.
Resumo:
Mutations in the Ras-pathway occur in 40–45% of colorectal cancer patients and these are refractory to treatment with anti-EGFR-targeted therapies. With this in mind, we have studied novel guanidinium- based compounds with demonstrated ability to inhibit protein kinases. We have performed docking stud- ies with several proteins involved in the Ras-pathway and evaluated 3,40-bis-guanidinium derivatives as inhibitors of B-Raf. Compound 3, the most potent in this series, demonstrated strong cytotoxicity in WTB-Raf colorectal cancer cells and also cells with V600EB-Raf mutations. Cell death was induced by apop- tosis, detected by cleavage of PARP. Compound 3 also potently inhibited ERK1/2 signalling, inhibited EGFR activation, as well as Src, STAT3 and AKT phosphorylation. Mechanistically, compound 3 did not inhibit ATP binding to B-Raf, but direct assay of B-Raf activity was inhibited in vitro. Summarizing, we have identified a novel B-Raf type-III inhibitor that exhibits potent cellular cytotoxicity
Resumo:
Tese de doutoramento, Medicina Dentária (Periodontologia), Universidade de Lisboa, Faculdade de Medicina Dentária, 2016
Resumo:
Small ubiquitin-like modifier (SUMO) conjugation affects a broad range of processes in plants, including growth, flower initiation, pathogen defense, and responses to abiotic stress. Here, we investigate in vivo and in vitro a SUMO conjugating enzyme with a Cys to Ser change in the active site, and show that it has a dominant negative effect. In planta expression significantly perturbs normal development, leading to growth retardation, early flowering and gene expression changes. We suggest that the mutant protein can serve as a probe to investigate sumoylation, also in plants for which poor genetic infrastructure precludes analysis via loss-of-function mutants.
Resumo:
Excess reactive oxygen species (ROS) formation can trigger various pathological conditions such as inflammation, in which xanthine oxidase (XO) is one major enzymatic source of ROS. Although XO has been reported to play essential roles in inflammatory conditions, the molecular mechanisms underlying the involvement of XO in inflammatory pathways remain unclear. Febuxostat, a selective and potent inhibitor of XO, effectively inhibits not only the generation of uric acid but also the formation of ROS. In this study, therefore, we examined the effects of febuxostat on lipopolysaccharide (LPS)-mediated inflammatory responses. Here we show that febuxostat suppresses LPS-induced MCP-1 production and mRNA expression via activating MAPK phosphatase-1 (MKP-1) which, in turn, leads to dephosphorylation and inactivation of JNK in macrophages. Moreover, these effects of febuxostat are mediated by inhibiting XO-mediated intracellular ROS production. Taken together, our data suggest that XO mediates LPS-induced phosphorylation of JNK through ROS production and MKP-1 inactivation, leading to MCP-1 production in macrophages. These studies may bring new insights into the novel role of XO in regulating inflammatory process through MAPK phosphatase, and demonstrate the potential use of XO inhibitor in modulating the inflammatory processes.
Resumo:
Inhibitors of the HIV aspartyl protease [HIV protease inhibitors (HIV-PIs)] are the cornerstone of treatment for HIV. Beyond their well-defined antiretroviral activity, these drugs have additional effects that modulate cell viability and homeostasis. However, little is known about the virus-independent pathways engaged by these molecules. Here we show that the HIV-PI Nelfinavir decreases translation rates and promotes a transcriptional program characteristic of the integrated stress response (ISR). Mice treated with Nelfinavir display hallmarks of this stress response in the liver, including α subunit of translation initiation factor 2 (eIF2α) phosphorylation, activating transcription factor-4 (ATF4) induction, and increased expression of known downstream targets. Mechanistically, Nelfinavir-mediated ISR bypassed direct activation of the eIF2α stress kinases and instead relied on the inhibition of the constitutive eIF2α dephosphorylation and down-regulation of the phophatase cofactor CReP (Constitutive Repressor of eIF2α Phosphorylation; also known as PPP1R15B). These findings demonstrate that the modulation of eIF2α-specific phosphatase cofactor activity can be a rheostat of cellular homeostasis that initiates a functional ISR and suggest that the HIV-PIs could be repositioned as therapeutics in human diseases to modulate translation rates and stress responses.
Resumo:
Introduction: Durant la pathogenèse d’ostéoarthrose (OA), les cytokines pro-inflammatoires IL-1β (Interleukin-1 beta) et TNF-α (Tumor necrosis factor alpha) stimulent la dégradation des agrécanes par l’aggrécanase-1 ou ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motif). Ces cytokines peuvent stimuler plusieurs voies de signalisation conduisant ainsi à l’augmentation de l’expression des ADAMTS dans les chondrocytes humains. Les TIMPs (tissue inhibitor of metalloproteinases) présentent des inhibiteurs endogènes de l’ADAMTS. Nous avons démontré que la Rapamycine (un immunosuppresseur et un inhibiteur du mamalian target of Rapamycin (mTOR)) peut avoir des effets bénéfiques dans cette pathologie. Notre étude examine l’effet de la Rapamycine sur l’expression de l’ADAMTS-4 induit par les cytokines, son implication dans certaines voies de signalisation, et son effet sur l’expression du TIMP-3. Méthodes: Des chondrocytes normaux sont traités avec la Rapamycine seule ou stimulés aussi avec l’IL-1β et le TNF-α. Les effets de la Rapamycine sur l’expression de l’ADAMTS-4 et du TIMP-3 ont été étudiés par l’analyse RT-PCR et l’activité enzymatique a été étudiée par la technique d’ELISA. Les effets de la Rapamycine sur certaines voies de signalisation ont été étudiés par le Western blot. Résultats: Nous avons trouvé que la Rapamycine inhibe l’expression de l’ARNm de l’ADAMTS-4 induit par les cytokines pro-inflammatoires dans les chondrocytes humains. L’activité enzymatique de l’ADAMTS-4 induit par l’IL-1β a été légèrement diminuée par la Rapamycine. En plus, cette dernière a montré de différents effets sur plusieurs voies de signalisation stimulées par l’IL-1β et le TNF-α telles que les voies des MAPKs (Mitogen activated protein kinase), de l’AKT, et de la p70 S6 kinase. La Rapamycine a inhibé partiellement l’activation de la phosphorylation de l’ERK1/2 MAPK (extracellular signal-regulated protein kinase MAPK) en présence du TNF-α seulement. En outre, la Rapamycine a inhibé la phosphorylation des protéines p38 MAPK, JNK (c-Jun N-terminal kinase), et AKT activée par l’IL-1β seulement. En plus, la phosphorylation de la protéine p70 S6K stimulée par l’IL-1β et le TNF-α a été inhibée par la Rapamycine. D’autre part, nous avons démontré que le niveau du TIMP-3 a été augmenté en présence de la Rapamycine. Conclusion: Ces résultats suggèrent que la Rapamycine peut bloquer l’action de l’ADAMTS-4 via l’inhibition de l’activation des MAPKs, de l’AKT, et de la p70 S6K. La Rapamycine pourrait ainsi être considérée pour la prévention de la perte du cartilage chez les patients ostéoarthritiques.
Resumo:
Introduction: L’activation des cellules stellaires hépatiques (CSHs) est un point clé du processus de fibrose hépatique. Les lymphocytes T CD4+ intra-hépatiques sont une source majeure de cytokines anti-inflammatoires comme l’IL-10 et pro-inflammatoire (IL-17A), hépatoprotectrice (IL-22) produites par les Th17. Les Th17 sont impliqués dans de nombreuses pathologies inflammatoires mais l’effet de ces cellules sur les CSHs n’est pas encore élucidé. Objectif: Comprendre le rôle des cytokines de type Th17 dans le processus d’activation des CSHs. Méthodes: La lignée de CSHs humaine LX2 a été stimulée par l’IL-17A ou l’IL-22 puis comparée à des cellules traitées par le TGF-b et le tampon phosphate salin (PBS). L’activation des CSHs a été évaluée en examinant les molécules profibrotique alpha-smooth muscle actin (a-SMA), collagène de type I (COL1A1) et inhibiteur produits par les tissus des métalloprotéases matricielles I (TIMP-I) par q-PCR. L’expression protéique a été validée par immunobuvardage ou coloration au rouge de picro Sirius. L’expression membranaire de l’IL-10Rb, du TGF-b-RII et de l’IL-17RA a été mesurée par cytométrie en flux. Résultats: L’IL-17A et l’IL-22 n’activent pas les cellules LX2, car aucune induction d’a-SMA, de COL1A1 et de TIMP-I n’a été observée. Cependant, l’IL-17A et l’IL-22 sensibilisent les CSHs à l’action du TGF-b, tel que démontré par une forte expression et production d’a-SMA, collagène type I et TIMP-I. L’IL-17A, mais pas l’IL-22, induit la surexpression à la surface cellulaire du TGF-b-RII et inhibe partiellement la baisse d’expression du TGF--RII après stimulation au TGF-b. Conclusion: Nos résultats démontrent une fonction pro-fibrotique de l’IL-17A et de l’IL-22, car les deux cytokines sensibilisent les CSHs à l’action du TGF-b. L’IL-17A agit via la surexpression et la stabilisation du TGF-b-RII tandis que l’IL-22 agit probablement par des mécanismes intracellulaires.
Resumo:
P rosea syn. Indica belong to the family of plumbaginaceae, is an important medicinal plant, cultivated widely in India. The roots of these plant are generally used for medicinal purposes mainly as diuretic, germicidal, vessicant, and abortifacient. It is also used for anaemia, diarrhea, leprosy and common wart. The bark of the root contains orange yellow pigment named plumbagin, a crystalline substance, belongs to the class of naphthoquinone. Its chemical structure is 5-hydroxy 2-methyl 1,4naphthoquinone. Apart from P rosea, P zeylanica, P europea, Drosera and Drosophyllum also contains plumbagin. The most exploited source of plumbagin is, of course, P. rosea roots. The roots contain O.9mg/ g D.Wt. of plumbagin in the roots. These plants grow very slowly and the roots suitable for plumbagin extraction can be obtained only after several years of growth. The productivity of the plant is also rather poor. The focus of the present study was to develop alternative strategies to obtain plumbagin. The tissue culture of P rosea for micropropagation has been studied
Resumo:
This paper attempts to develop an improved tool, which would read two dimensional(2D) cardiac MRI images and compute areas and volume of the scar tissue. Here the computation would be done on the cardiac MR images to quantify the extent of damage inflicted by myocardial infarction on the cardiac muscle (myocardium) using Interpolation
Resumo:
Citrus flavonoids have been investigated for their biological activity, with both anti-inflammatory and -carcinogenic effects being reported. However, little information is known on the bioavailability of these compounds in vivo. The objectives of this study were to determine the tissue distribution of naringenin after gastric gavage of [H-3]-naringenin to rats. Unlabelled naringenin was also used to quantify the levels of naringenin and its major metabolites in tissues and eliminated in the urine and faeces. Significant radioactivity was detected in the plasma as well as all tissues examined 2 h post-gavage. After 18 h, higher levels of radioactivity were retained in plasma and tissues (55% of the administered radioactivity). Investigation of the nature of metabolites, using unlabelled naringenin, revealed that the glucuronides were the major components in plasma, tissues and urine, in addition to the colonic metabolite 3-(4- hydroxyphenyl) propionic acid, detected in the urine. The aglycone was the form extensively retained in tissues after 18 h post-gavage. Total identified metabolites detected after 18 h in most tissues were only 1-5% of the levels detected after 2 h. However, the brain, lungs and heart retained 27, 20 and 11%, respectively, relative to the total metabolites detected at 2 h. While radioactive detection suggests increased levels of breakdown products of naringenin after 18 h versus 2 h, the products identified using unlabelled naringenin are not consistent with this, suggesting that a predominant proportion of the naringenin breakdown products at 18 h are retained as smaller decomposition molecules which cannot yet be identified.