985 resultados para thorax radiography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the predictive merits of selected cognitive and noncognitive variables on the national Registry exam pass rate using 2008 graduates (n = 175) from community college radiography programs in Florida. The independent variables included two GPAs, final grades in five radiography courses, self-efficacy, and social support. The dependent variable was the first-attempt results on the national Registry exam. The design was a retrospective predictive study that relied on academic data collected from participants using the self-report method and on perceptions of students' success on the national Registry exam collected through a questionnaire developed and piloted in the study. All independent variables except self-efficacy and social support correlated with success on the national Registry exam ( p < .01) using the Pearson Product-Moment Correlation analysis. The strongest predictor of the national Registry exam success was the end-of-program GPA, r = .550, p < .001. The GPAs and scores for self-efficacy and social support were entered into a logistic regression analysis to produce a prediction model. The end-of-program GPA (p = .015) emerged as a significant variable. This model predicted 44% of the students who failed the national Registry exam and 97.3% of those who passed, explaining 45.8% of the variance. A second model included the final grades for the radiography courses, self efficacy, and social support. Three courses significantly predicted national Registry exam success; Radiographic Exposures, p < .001; Radiologic Physics, p = .014; and Radiation Safety & Protection, p = .044, explaining 56.8% of the variance. This model predicted 64% of the students who failed the national Registry exam and 96% of those who passed. The findings support the use of in-program data as accurate predictors of success on the national Registry exam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FAPESP:95/02610

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the case of a 82-year-old woman, asymptomatic, subject to chest computed tomography for trauma. Then the patient underwent surgery. Before sternotomy, femoro-femoral bypass was starter in order to decompress the aneurysm; using deep hypothermia and circulatory arrest, ascending aorta and hemiarch replacement were performed with a Dacron graft. Post-operative course was uneventful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducción: La enfermedad respiratoria ocupacional es causada por la exposición a diferentes agentes en el trabajo. Las pruebas objetivas realizadas en sospecha de enfermedad respiratoria de origen laboral, son importantes herramientas que permiten realizar un adecuado diagnóstico, una detección precoz de la enfermedad respiratoria ocupacional, disminuye el progreso rápido de la patología, la morbilidad de los trabajadores y el impacto negativo sobre su futuro laboral. Objetivo: Caracterizar las pruebas paraclínicas de las patologías respiratorias de trabajadores, en un centro de referencia neumológico de Bucaramanga año 2014-2016. Materiales y métodos: Se realizó un estudio descriptivo retrospectivo con datos secundarios de 96 trabajadores que laboran en diferentes actividades económicas. Se incluyeron variables sociodemográficas, laborales, ayudas imagenológicas y pruebas de función pulmonar, realizando 3 grupos de acuerdo a su patología que fueron: Asma, síndrome de disfunción reactiva de la vía aérea y neumoconiosis. En el análisis estadístico se emplearon medidas de tendencia central y dispersión. Resultados: De los 96 trabajadores 84.4% son hombres, las actividades económicas más frecuentes fueron la industria del petróleo y gas en un 27.1% y trabajadores en materiales de construcción en un 19.8%. En la caracterización paraclínica por grupo de patología, para asma predominó la obstrucción en la espirometría (46.9%) y los volúmenes pulmonares con atrapamiento aéreo (95.5%), en RADS (síndrome de disfunción de vías aéreas reactivas) los volúmenes pulmonares con atrapamiento aéreo (77%) y en las neumoconiosis para Rx de tórax (90.3%) y Tac de tórax (100%) reportaron alteraciones parenquimatosas, espirometría con obstrucción (54.8%) y volúmenes pulmonares con atrapamiento aéreo (62.5 %).Discusión y Conclusiones: Las ocupaciones de mayor riesgo para desarrollo de neumopatías de origen ocupacional fuero, , son la minería y construcción y para asma la agricultura y manufacturas. Para asma se evidenció que no hay significancia diagnóstica para estudios imagenológicos pero sí para las pruebas de función pulmonar. Para neumoconiosis el estudio imagenológico es el de mayor importancia ya que en las radiografías se presentan cambios incluso mucho antes de la afectación de la función pulmonar. Para RADS se concluyó que la realización de un test de provocación con metacolina sería el Gold estándar para el diagnóstico. Las pruebas de función respiratoria son de vital importancia para determinar la enfermedad ocupacional en trabajadores expuestos para vigilancia y detección precoz, es conveniente la realización de protocolos para la evaluación y diagnóstico de la enfermedad respiratoria de origen ocupacional. Palabras claves: Neumoconiosis, asma ocupacional, función pulmonar, radiografía de tórax, ocupación, Colombia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Pseudomonas aeruginosa is the most common bacterial pathogen in cystic fibrosis (CF) patients. Current infection control guidelines aim to prevent transmission via contact and respiratory droplet routes and do not consider the possibility of airborne transmission. We hypothesized that with coughing, CF subjects produce viable, respirable bacterial aerosols. Methods: Cross-sectional study of 15 children and 13 adults with CF, 26 chronically infected with P. aeruginosa. A cough aerosol sampling system enabled fractioning of respiratory particles of different size, and culture of viable Gram negative non-fermentative bacteria. We collected cough aerosols during 5 minutes voluntary coughing and during a sputum induction procedure when tolerated. Standardized quantitative culture and genotyping techniques were used. Results: P. aeruginosa was isolated in cough aerosols of 25 (89%) subjects of whom 22 produced sputum samples. P. aeruginosa from sputum and paired cough aerosols were indistinguishable by molecular typing. In 4 cases the same genotype was isolated from ambient room air. Approximately 70% of viable aerosols collected during voluntary coughing were of particles ≤ 3.3 microns aerodynamic diameter. P. aeruginosa, Burkholderia cenocepacia Stenotrophomonas maltophilia and Achromobacter xylosoxidans were cultivated from respiratory particles in this size range. Positive room air samples were associated with high total counts in cough aerosols (P=0.003). The magnitude of cough aerosols were associated with higher FEV1 (r=0.45, P=0.02) and higher quantitative sputum culture results (r=0.58, P=0.008). Conclusion: During coughing, CF patients produce viable aerosols of P. aeruginosa and other Gram negative bacteria of respirable size range, suggesting the potential for airborne transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis applies Monte Carlo techniques to the study of X-ray absorptiometric methods of bone mineral measurement. These studies seek to obtain information that can be used in efforts to improve the accuracy of the bone mineral measurements. A Monte Carlo computer code for X-ray photon transport at diagnostic energies has been developed from first principles. This development was undertaken as there was no readily available code which included electron binding energy corrections for incoherent scattering and one of the objectives of the project was to study the effects of inclusion of these corrections in Monte Carlo models. The code includes the main Monte Carlo program plus utilities for dealing with input data. A number of geometrical subroutines which can be used to construct complex geometries have also been written. The accuracy of the Monte Carlo code has been evaluated against the predictions of theory and the results of experiments. The results show a high correlation with theoretical predictions. In comparisons of model results with those of direct experimental measurements, agreement to within the model and experimental variances is obtained. The code is an accurate and valid modelling tool. A study of the significance of inclusion of electron binding energy corrections for incoherent scatter in the Monte Carlo code has been made. The results show this significance to be very dependent upon the type of application. The most significant effect is a reduction of low angle scatter flux for high atomic number scatterers. To effectively apply the Monte Carlo code to the study of bone mineral density measurement by photon absorptiometry the results must be considered in the context of a theoretical framework for the extraction of energy dependent information from planar X-ray beams. Such a theoretical framework is developed and the two-dimensional nature of tissue decomposition based on attenuation measurements alone is explained. This theoretical framework forms the basis for analytical models of bone mineral measurement by dual energy X-ray photon absorptiometry techniques. Monte Carlo models of dual energy X-ray absorptiometry (DEXA) have been established. These models have been used to study the contribution of scattered radiation to the measurements. It has been demonstrated that the measurement geometry has a significant effect upon the scatter contribution to the detected signal. For the geometry of the models studied in this work the scatter has no significant effect upon the results of the measurements. The model has also been used to study a proposed technique which involves dual energy X-ray transmission measurements plus a linear measurement of the distance along the ray path. This is designated as the DPA( +) technique. The addition of the linear measurement enables the tissue decomposition to be extended to three components. Bone mineral, fat and lean soft tissue are the components considered here. The results of the model demonstrate that the measurement of bone mineral using this technique is stable over a wide range of soft tissue compositions and hence would indicate the potential to overcome a major problem of the two component DEXA technique. However, the results also show that the accuracy of the DPA( +) technique is highly dependent upon the composition of the non-mineral components of bone and has poorer precision (approximately twice the coefficient of variation) than the standard DEXA measurements. These factors may limit the usefulness of the technique. These studies illustrate the value of Monte Carlo computer modelling of quantitative X-ray measurement techniques. The Monte Carlo models of bone densitometry measurement have:- 1. demonstrated the significant effects of the measurement geometry upon the contribution of scattered radiation to the measurements, 2. demonstrated that the statistical precision of the proposed DPA( +) three tissue component technique is poorer than that of the standard DEXA two tissue component technique, 3. demonstrated that the proposed DPA(+) technique has difficulty providing accurate simultaneous measurement of body composition in terms of a three component model of fat, lean soft tissue and bone mineral,4. and provided a knowledge base for input to decisions about development (or otherwise) of a physical prototype DPA( +) imaging system. The Monte Carlo computer code, data, utilities and associated models represent a set of significant, accurate and valid modelling tools for quantitative studies of physical problems in the fields of diagnostic radiology and radiography.