954 resultados para thermal image segmentation
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Apresenta-se nesta dissertação a proposta de um algoritmo supervisionado de classificação de imagens de sensoreamento remoto, composto de três etapas: remoção ou suavização de nuvens, segmentação e classificação.O método de remoção de nuvens usa filtragem homomórfica para tratar as obstruções causadas pela presença de nuvens suaves e o método Inpainting para remover ou suavizar a preseça de sombras e nuvens densas. Para as etapas de segmentação e classificação é proposto um método baseado na energia AC dos coeficientes da Transformada Cosseno Discreta (DCT). O modo de classificação adotado é do tipo supervisionado. Para avaliar o algioritmo foi usado um banco de 14 imagens captadas por vários sensores, das quais 12 possuem algum tipo de obstrução. Para avaliar a etapa de remoção ou suavização de nuvens e sombras são usados a razão sinal-ruído de pico (PSNR) e o coeficiente Kappa. Nessa fase, vários filtros passa-altas foram comparados para a escolha do mais eficiente. A segmentação das imagens é avaliada pelo método da coincidência entre bordas (EBC) e a classificação é avaliada pela medida da entropia relativa e do erro médio quadrático (MSE). Tão importante quanto as métricas, as imagens resultantes são apresentadas de forma a permitir a avaliação subjetiva por comparação visual. Os resultados mostram a eficiência do algoritmo proposto, principalmente quando comparado ao software Spring, distribuído pelo Instituto Nacional de Pesquisas Espaciais (INPE).
Resumo:
Hepatocellular carcinoma (HCC) is a primary tumor of the liver. After local therapies, the tumor evaluation is based on the mRECIST criteria, which involves the measurement of the maximum diameter of the viable lesion. This paper describes a computed methodology to measure through the contrasted area of the lesions the maximum diameter of the tumor by a computational algorithm 63 computed tomography (CT) slices from 23 patients were assessed. Non-contrasted liver and HCC typical nodules were evaluated, and a virtual phantom was developed for this purpose. Optimization of the algorithm detection and quantification was made using the virtual phantom. After that, we compared the algorithm findings of maximum diameter of the target lesions against radiologist measures. Computed results of the maximum diameter are in good agreement with the results obtained by radiologist evaluation, indicating that the algorithm was able to detect properly the tumor limits A comparison of the estimated maximum diameter by radiologist versus the algorithm revealed differences on the order of 0.25 cm for large-sized tumors (diameter > 5 cm), whereas agreement lesser than 1.0cm was found for small-sized tumors. Differences between algorithm and radiologist measures were accurate for small-sized tumors with a trend to a small increase for tumors greater than 5 cm. Therefore, traditional methods for measuring lesion diameter should be complemented with non-subjective measurement methods, which would allow a more correct evaluation of the contrast-enhanced areas of HCC according to the mRECIST criteria.
Resumo:
In Computer-Aided Diagnosis-based schemes in mammography analysis each module is interconnected, which directly affects the system operation as a whole. The identification of mammograms with and without masses is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest for further image segmentation. This study aims to evaluate the performance of three techniques in classifying regions of interest as containing masses or without masses (without clinical findings), as well as the main contribution of this work is to introduce the Optimum-Path Forest (OPF) classifier in this context, which has never been done so far. Thus, we have compared OPF against with two sorts of neural networks in a private dataset composed by 120 images: Radial Basis Function and Multilayer Perceptron (MLP). Texture features have been used for such purpose, and the experiments have demonstrated that MLP networks have been slightly better than OPF, but the former is much faster, which can be a suitable tool for real-time recognition systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST) of 7-to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb(R) broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 degrees C) to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05) from the values obtained by the equations. MST values significantly increased (p < 0.05) when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Color texture classification is an important step in image segmentation and recognition. The color information is especially important in textures of natural scenes, such as leaves surfaces, terrains models, etc. In this paper, we propose a novel approach based on the fractal dimension for color texture analysis. The proposed approach investigates the complexity in R, G and B color channels to characterize a texture sample. We also propose to study all channels in combination, taking into consideration the correlations between them. Both these approaches use the volumetric version of the Bouligand-Minkowski Fractal Dimension method. The results show a advantage of the proposed method over other color texture analysis methods. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we address the "skull-stripping" problem in 3D MR images. We propose a new method that employs an efficient and unique histogram analysis. A fundamental component of this analysis is an algorithm for partitioning a histogram based on the position of the maximum deviation from a Gaussian fit. In our experiments we use a comprehensive image database, including both synthetic and real MRI. and compare our method with other two well-known methods, namely BSE and BET. For all datasets we achieved superior results. Our method is also highly independent of parameter tuning and very robust across considerable variations of noise ratio.
Resumo:
Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Statistical modelling and statistical learning theory are two powerful analytical frameworks for analyzing signals and developing efficient processing and classification algorithms. In this thesis, these frameworks are applied for modelling and processing biomedical signals in two different contexts: ultrasound medical imaging systems and primate neural activity analysis and modelling. In the context of ultrasound medical imaging, two main applications are explored: deconvolution of signals measured from a ultrasonic transducer and automatic image segmentation and classification of prostate ultrasound scans. In the former application a stochastic model of the radio frequency signal measured from a ultrasonic transducer is derived. This model is then employed for developing in a statistical framework a regularized deconvolution procedure, for enhancing signal resolution. In the latter application, different statistical models are used to characterize images of prostate tissues, extracting different features. These features are then uses to segment the images in region of interests by means of an automatic procedure based on a statistical model of the extracted features. Finally, machine learning techniques are used for automatic classification of the different region of interests. In the context of neural activity signals, an example of bio-inspired dynamical network was developed to help in studies of motor-related processes in the brain of primate monkeys. The presented model aims to mimic the abstract functionality of a cell population in 7a parietal region of primate monkeys, during the execution of learned behavioural tasks.
Resumo:
Ultrasound imaging is widely used in medical diagnostics as it is the fastest, least invasive, and least expensive imaging modality. However, ultrasound images are intrinsically difficult to be interpreted. In this scenario, Computer Aided Detection (CAD) systems can be used to support physicians during diagnosis providing them a second opinion. This thesis discusses efficient ultrasound processing techniques for computer aided medical diagnostics, focusing on two major topics: (i) Ultrasound Tissue Characterization (UTC), aimed at characterizing and differentiating between healthy and diseased tissue; (ii) Ultrasound Image Segmentation (UIS), aimed at detecting the boundaries of anatomical structures to automatically measure organ dimensions and compute clinically relevant functional indices. Research on UTC produced a CAD tool for Prostate Cancer detection to improve the biopsy protocol. In particular, this thesis contributes with: (i) the development of a robust classification system; (ii) the exploitation of parallel computing on GPU for real-time performance; (iii) the introduction of both an innovative Semi-Supervised Learning algorithm and a novel supervised/semi-supervised learning scheme for CAD system training that improve system performance reducing data collection effort and avoiding collected data wasting. The tool provides physicians a risk map highlighting suspect tissue areas, allowing them to perform a lesion-directed biopsy. Clinical validation demonstrated the system validity as a diagnostic support tool and its effectiveness at reducing the number of biopsy cores requested for an accurate diagnosis. For UIS the research developed a heart disease diagnostic tool based on Real-Time 3D Echocardiography. Thesis contributions to this application are: (i) the development of an automated GPU based level-set segmentation framework for 3D images; (ii) the application of this framework to the myocardium segmentation. Experimental results showed the high efficiency and flexibility of the proposed framework. Its effectiveness as a tool for quantitative analysis of 3D cardiac morphology and function was demonstrated through clinical validation.
Resumo:
Navigated ultrasound (US) imaging is used for the intra-operative acquisition of 3D image data during imageguided surgery. The presented approach includes the design of a compact and easy to use US calibration device and its integration into a software application for navigated liver surgery. User interaction during the calibration process is minimized through automatic detection of the calibration process followed by automatic image segmentation, calculation of the calibration transform and validation of the obtained result. This leads to a fast, interaction-free and fully automatic calibration procedure enabling intra-operative
Resumo:
In this study the distribution of intramyocellular lipids (IMCL) in human calf muscles was determined by 1H-MR spectroscopic imaging (MRSI) measurements. An obstacle for MRSI measurements in the calf, including different muscles, is the inevitable inclusion of regions with high concentrations of extramyocellular lipids (EMCL). This can lead to signal bleeding and consequently to unpredictable overlaps of IMCL resonances with EMCL in voxels of interest. The results of this study show that signal bleeding from EMCL can be substantially reduced in voxels from calf muscles by the application of a lipid extrapolation (LE) procedure (Haupt et al., Magn Reson Med 1996;35:678). The spectra of all voxels located within muscle tissue were fitted, and the metabolite values were assigned to one of 10 different muscles based on image segmentation. Significant IMCL differences between some muscles were obtained, with high values in m. soleus and two to three times lower values in the tibialis anterior, tibialis posterior, and gastrocnemius muscles. In addition to gross differences between muscles, significant intersubject differences were observed in both IMCL content and distribution over different muscles. A significant correlation between fiber orientation (obtained from orientation-dependent dipolar coupling of creatine and taurine resonances) and IMCL content was found, indicating that IMCL content is directly correlated to biomechanical properties.
Resumo:
This contribution discusses the effects of camera aperture correction in broadcast video on colour-based keying. The aperture correction is used to ’sharpen’ an image and is one element that distinguishes the ’TV-look’ from ’film-look’. ’If a very high level of sharpening is applied, as is the case in many TV productions then this significantly shifts the colours around object boundaries with hight contrast. This paper discusses these effects and their impact on keying and describes a simple low-pass filter to compensate for them. Tests with colour-based segmentation algorithms show that the proposed compensation is an effective way of decreasing the keying artefacts on object boundaries.