997 resultados para test automation
Resumo:
Background In Booth v Amaca Pty Ltd and Amaba Pty Ltd,1 the New South Wales Dust Diseases Tribunal awarded a retired motor mechanic $326 640 in damages for his malignant pleural mesothelioma allegedly caused by exposure to asbestos through working with the brake linings manufactured by the defendants. The evidence before the Tribunal was that the plaintiff had been exposed to asbestos prior to working as a mechanic from home renovations when he was a child and loading a truck as a youth. However, as a mechanic he had been exposed to asbestos in brake linings on which he worked from 1953 to 1983. Curtis DCJ held at [172] that the asbestos from the brake linings ‘materially contributed to [the plaintiff’s] contraction of mesothelioma’. This decision was based upon acceptance that the effect of exposure to asbestos on the development of mesothelioma was cumulative and rejection of theory that a single fibre of asbestos can cause the disease...
Resumo:
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation(ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.
Resumo:
Unmanned Aerial Vehicles (UAVs) industry is a fast growing sector. Nowadays, the market offers numerous possibilities for off-the-shelf UAVs such as quadrotors or fixed-wings. Until UAVs demonstrate advance capabilities such as autonomous collision avoidance they will be segregated and restricted to flight in controlled environments. This work presents a visual fuzzy servoing system for obstacle avoidance using UAVs. To accomplish this task we used the visual information from the front camera. Images are processed off-board and the result send to the Fuzzy Logic controller which then send commands to modify the orientation of the aircraft. Results from flight test are presented with a commercial off-the-shelf platform.
Resumo:
This paper presents a survey of previously presented vision based aircraft detection flight test, and then presents new flight test results examining the impact of camera field-of view choice on the detection range and false alarm rate characteristics of a vision-based aircraft detection technique. Using data collected from approaching aircraft, we examine the impact of camera fieldof-view choice and confirm that, when aiming for similar levels of detection confidence, an improvement in detection range can be obtained by choosing a smaller effective field-of-view (in terms of degrees per pixel).
Resumo:
Monitoring environmental health is becoming increasingly important as human activity and climate change place greater pressure on global biodiversity. Acoustic sensors provide the ability to collect data passively, objectively and continuously across large areas for extended periods. While these factors make acoustic sensors attractive as autonomous data collectors, there are significant issues associated with large-scale data manipulation and analysis. We present our current research into techniques for analysing large volumes of acoustic data efficiently. We provide an overview of a novel online acoustic environmental workbench and discuss a number of approaches to scaling analysis of acoustic data; online collaboration, manual, automatic and human-in-the loop analysis.
Resumo:
Several track-before-detection approaches for image based aircraft detection have recently been examined in an important automated aircraft collision detection application. A particularly popular approach is a two stage processing paradigm which involves: a morphological spatial filter stage (which aims to emphasize the visual characteristics of targets) followed by a temporal or track filter stage (which aims to emphasize the temporal characteristics of targets). In this paper, we proposed new spot detection techniques for this two stage processing paradigm that fuse together raw and morphological images or fuse together various different morphological images (we call these approaches morphological reinforcement). On the basis of flight test data, the proposed morphological reinforcement operations are shown to offer superior signal to-noise characteristics when compared to standard spatial filter options (such as the close-minus-open and adaptive contour morphological operations). However, system operation characterised curves, which examine detection verses false alarm characteristics after both processing stages, illustrate that system performance is very data dependent.
Resumo:
IEEE 802.11p is the new standard for inter-vehicular communications (IVC) using the 5.9 GHz frequency band; it is planned to be widely deployed to enable cooperative systems. 802.11p uses and performance have been studied theoretically and in simulations over the past years. Unfortunately, many of these results have not been confirmed by on-tracks experimentation. In this paper, we describe field trials of 802.11p technology with our test vehicles. Metrics such as maximum range, latency and frame loss are examined.
Resumo:
For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.
Resumo:
There is an increased interested in Uninhabited Aerial Vehicle (UAV) operations and research into advanced methods for commanding and controlling multiple heterogeneous UAVs. Research into areas of supervisory control has rapidly increased. Past research has investigated various approaches of autonomous control and operator limitation to improve mission commanders' Situation Awareness (SA) and cognitive workload. The aim of this paper is to address this challenge through a visualisation framework of UAV information constructed from Information Abstraction (IA). This paper presents the concept and process of IA, and the visualisation framework (constructed using IA), the concept associated with the Level Of Detail (LOD) indexing method, the visualisation of an example of the framework. Experiments will test the hypothesis that, the operator will be able to achieve increased SA and reduced cognitive load with the proposed framework.
Resumo:
Billing Mediation Platform (BMP) in telecommunication industry is used to process real-time streams of Call Detail Records (CDRs) which can be a massive number a day. The generated records by BMP can be deployed for billing purposes, fraud detection, spam filtering, traffic analysis, and churn forecast. Several of these applications are distinguished by real-time processing requiring low-latency analysis of CDRs. Testing of such a platform carries diverse aspects like stress testing of analytics for scalability and what-if scenarios which require generating of CDRs with realistic volumetric and appropriate properties. The approach of this project is to build user friendly and flexible application which assists the development department to test their billing solution occasionally. These generators projects have been around for a while the only difference are the potions they cover and the purpose they will be used for. This paper proposes to use a simulator application to test the BMPs with simulating CDRs. The Simulated CDRs are modifiable based on the user requirements and represent real world data.