954 resultados para tabu search algorithm


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper discusses ensemble behaviour in the Spiking Neuron Stochastic Diffusion Network, SNSDN, a novel network exploring biologically plausible information processing based on higher order temporal coding. SNSDN was proposed as an alternative solution to the binding problem [1]. SNSDN operation resembles Stochastic Diffusin on Search, SDS, a non-deterministic search algorithm able to rapidly locate the best instantiation of a target pattern within a noisy search space ([3], [5]). In SNSDN, relevant information is encoded in the length of interspike intervals. Although every neuron operates in its own time, ‘attention’ to a pattern in the search space results in self-synchronised activity of a large population of neurons. When multiple patterns are present in the search space, ‘switching of at- tention’ results in a change of the synchronous activity. The qualitative effect of attention on the synchronicity of spiking behaviour in both time and frequency domain will be discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper tackles the problem of showing that evolutionary algorithms for fuzzy clustering can be more efficient than systematic (i.e. repetitive) approaches when the number of clusters in a data set is unknown. To do so, a fuzzy version of an Evolutionary Algorithm for Clustering (EAC) is introduced. A fuzzy cluster validity criterion and a fuzzy local search algorithm are used instead of their hard counterparts employed by EAC. Theoretical complexity analyses for both the systematic and evolutionary algorithms under interest are provided. Examples with computational experiments and statistical analyses are also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optimization methods that employ the classical Powell-Hestenes-Rockafellar augmented Lagrangian are useful tools for solving nonlinear programming problems. Their reputation decreased in the last 10 years due to the comparative success of interior-point Newtonian algorithms, which are asymptotically faster. In this research, a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its `pure` counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the interior-point method is replaced by the Newtonian resolution of a Karush-Kuhn-Tucker (KKT) system identified by the augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:http://www.ime.usp.br/similar to egbirgin/tango/.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

First-order temporal logic is a coincise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics have identified important enumerable and even decidable fragments. In this paper we present the first resolution-based calculus for monodic first-order temporal logic. Although the main focus of the paper is on establishing completeness result, we also consider implementation issues and define a basic loop-search algorithm that may be used to guide the temporal resolution system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electronic applications are currently developed under the reuse-based paradigm. This design methodology presents several advantages for the reduction of the design complexity, but brings new challenges for the test of the final circuit. The access to embedded cores, the integration of several test methods, and the optimization of the several cost factors are just a few of the several problems that need to be tackled during test planning. Within this context, this thesis proposes two test planning approaches that aim at reducing the test costs of a core-based system by means of hardware reuse and integration of the test planning into the design flow. The first approach considers systems whose cores are connected directly or through a functional bus. The test planning method consists of a comprehensive model that includes the definition of a multi-mode access mechanism inside the chip and a search algorithm for the exploration of the design space. The access mechanism model considers the reuse of functional connections as well as partial test buses, cores transparency, and other bypass modes. The test schedule is defined in conjunction with the access mechanism so that good trade-offs among the costs of pins, area, and test time can be sought. Furthermore, system power constraints are also considered. This expansion of concerns makes it possible an efficient, yet fine-grained search, in the huge design space of a reuse-based environment. Experimental results clearly show the variety of trade-offs that can be explored using the proposed model, and its effectiveness on optimizing the system test plan. Networks-on-chip are likely to become the main communication platform of systemson- chip. Thus, the second approach presented in this work proposes the reuse of the on-chip network for the test of the cores embedded into the systems that use this communication platform. A power-aware test scheduling algorithm aiming at exploiting the network characteristics to minimize the system test time is presented. The reuse strategy is evaluated considering a number of system configurations, such as different positions of the cores in the network, power consumption constraints and number of interfaces with the tester. Experimental results show that the parallelization capability of the network can be exploited to reduce the system test time, whereas area and pin overhead are strongly minimized. In this manuscript, the main problems of the test of core-based systems are firstly identified and the current solutions are discussed. The problems being tackled by this thesis are then listed and the test planning approaches are detailed. Both test planning techniques are validated for the recently released ITC’02 SoC Test Benchmarks, and further compared to other test planning methods of the literature. This comparison confirms the efficiency of the proposed methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main objective of this work is to optimize the performance of frequency selective surfaces (FSS) composed of crossed dipole conducting patches. The optimization process is performed by determining proper values for the width of the crossed dipoles and for the FSS array periodicity, while the length of the crossed dipoles is kept constant. Particularly, the objective is to determine values that provide wide bandwidth using a search algorithm with representation in bioinspired real numbers. Typically FSS structures composed of patch elements are used for band rejection filtering applications. The FSS structures primarily act like filters depending on the type of element chosen. The region of the electromagnetic spectrum chosen for this study is the one that goes from 7 GHz to 12 GHz, which includes mostly the X-band. This frequency band was chosen to allow the use of two X-band horn antennas, in the FSS measurement setup. The design of the FSS using the developed genetic algorithm allowed increasing the structure bandwidth

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motion estimation is the main responsible for data reduction in digital video encoding. It is also the most computational damanding step. H.264 is the newest standard for video compression and was planned to double the compression ratio achievied by previous standards. It was developed by the ITU-T Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts Group (MPEG) as the product of a partnership effort known as the Joint Video Team (JVT). H.264 presents novelties that improve the motion estimation efficiency, such as the adoption of variable block-size, quarter pixel precision and multiple reference frames. This work defines an architecture for motion estimation in hardware/software, using a full search algorithm, variable block-size and mode decision. This work consider the use of reconfigurable devices, soft-processors and development tools for embedded systems such as Quartus II, SOPC Builder, Nios II and ModelSim

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seismic wave dispersion and attenuation studies have become an important tool for lithology and fluid discrimination in hydrocarbon reservoirs. The processes associated to attenuation are complex and are encapsulated in a single quantitative description called quality factor (Q). The present dissertation has the objective of comparing different approaches of Q determination and is divided in two parts. Firstly, we made performance and robustness tests of three different approaches for Q determination in the frequency domain. They are: peak shift, centroid shift and spectral ratio. All these tests were performed in a three-layered model. In the suite of tests performed here, we varied the thickness, Q and inclination of the layers for propagation pulses with central frequency of 30, 40 and 60 Hz. We found that the centroid shift method is produces robust results for the entire suíte of tests. Secondly, we inverted for Q values using the peak and centroid shift methods using an sequential grid search algorithm. In this case, centroid shift method also produced more robust results than the peak shift method, despite being of slower convergence

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho apresenta a modelagem de um problema particular de Programação da Produção numa Fundição Automatizada e sua resolução por um algoritmo de busca heurística, que explora a estrutura do problema.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an intelligent search strategy for the conforming bad data errors identification in the generalized power system state estimation, by using the tabu search meta heuristic. The main objective is to detect critical errors involving both analog and topology errors. These errors are represented by conforming errors, whose nature affects measurements that actually do not present bad data and also the conventional bad data identification strategies based on the normalized residual methods. ©2005 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (1) the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry's own practice. © 2006 Elsevier Ltd. All rights reserved.