960 resultados para swd: Image segmentation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Color texture classification is an important step in image segmentation and recognition. The color information is especially important in textures of natural scenes, such as leaves surfaces, terrains models, etc. In this paper, we propose a novel approach based on the fractal dimension for color texture analysis. The proposed approach investigates the complexity in R, G and B color channels to characterize a texture sample. We also propose to study all channels in combination, taking into consideration the correlations between them. Both these approaches use the volumetric version of the Bouligand-Minkowski Fractal Dimension method. The results show a advantage of the proposed method over other color texture analysis methods. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we address the "skull-stripping" problem in 3D MR images. We propose a new method that employs an efficient and unique histogram analysis. A fundamental component of this analysis is an algorithm for partitioning a histogram based on the position of the maximum deviation from a Gaussian fit. In our experiments we use a comprehensive image database, including both synthetic and real MRI. and compare our method with other two well-known methods, namely BSE and BET. For all datasets we achieved superior results. Our method is also highly independent of parameter tuning and very robust across considerable variations of noise ratio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Statistical modelling and statistical learning theory are two powerful analytical frameworks for analyzing signals and developing efficient processing and classification algorithms. In this thesis, these frameworks are applied for modelling and processing biomedical signals in two different contexts: ultrasound medical imaging systems and primate neural activity analysis and modelling. In the context of ultrasound medical imaging, two main applications are explored: deconvolution of signals measured from a ultrasonic transducer and automatic image segmentation and classification of prostate ultrasound scans. In the former application a stochastic model of the radio frequency signal measured from a ultrasonic transducer is derived. This model is then employed for developing in a statistical framework a regularized deconvolution procedure, for enhancing signal resolution. In the latter application, different statistical models are used to characterize images of prostate tissues, extracting different features. These features are then uses to segment the images in region of interests by means of an automatic procedure based on a statistical model of the extracted features. Finally, machine learning techniques are used for automatic classification of the different region of interests. In the context of neural activity signals, an example of bio-inspired dynamical network was developed to help in studies of motor-related processes in the brain of primate monkeys. The presented model aims to mimic the abstract functionality of a cell population in 7a parietal region of primate monkeys, during the execution of learned behavioural tasks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrasound imaging is widely used in medical diagnostics as it is the fastest, least invasive, and least expensive imaging modality. However, ultrasound images are intrinsically difficult to be interpreted. In this scenario, Computer Aided Detection (CAD) systems can be used to support physicians during diagnosis providing them a second opinion. This thesis discusses efficient ultrasound processing techniques for computer aided medical diagnostics, focusing on two major topics: (i) Ultrasound Tissue Characterization (UTC), aimed at characterizing and differentiating between healthy and diseased tissue; (ii) Ultrasound Image Segmentation (UIS), aimed at detecting the boundaries of anatomical structures to automatically measure organ dimensions and compute clinically relevant functional indices. Research on UTC produced a CAD tool for Prostate Cancer detection to improve the biopsy protocol. In particular, this thesis contributes with: (i) the development of a robust classification system; (ii) the exploitation of parallel computing on GPU for real-time performance; (iii) the introduction of both an innovative Semi-Supervised Learning algorithm and a novel supervised/semi-supervised learning scheme for CAD system training that improve system performance reducing data collection effort and avoiding collected data wasting. The tool provides physicians a risk map highlighting suspect tissue areas, allowing them to perform a lesion-directed biopsy. Clinical validation demonstrated the system validity as a diagnostic support tool and its effectiveness at reducing the number of biopsy cores requested for an accurate diagnosis. For UIS the research developed a heart disease diagnostic tool based on Real-Time 3D Echocardiography. Thesis contributions to this application are: (i) the development of an automated GPU based level-set segmentation framework for 3D images; (ii) the application of this framework to the myocardium segmentation. Experimental results showed the high efficiency and flexibility of the proposed framework. Its effectiveness as a tool for quantitative analysis of 3D cardiac morphology and function was demonstrated through clinical validation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Navigated ultrasound (US) imaging is used for the intra-operative acquisition of 3D image data during imageguided surgery. The presented approach includes the design of a compact and easy to use US calibration device and its integration into a software application for navigated liver surgery. User interaction during the calibration process is minimized through automatic detection of the calibration process followed by automatic image segmentation, calculation of the calibration transform and validation of the obtained result. This leads to a fast, interaction-free and fully automatic calibration procedure enabling intra-operative

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study the distribution of intramyocellular lipids (IMCL) in human calf muscles was determined by 1H-MR spectroscopic imaging (MRSI) measurements. An obstacle for MRSI measurements in the calf, including different muscles, is the inevitable inclusion of regions with high concentrations of extramyocellular lipids (EMCL). This can lead to signal bleeding and consequently to unpredictable overlaps of IMCL resonances with EMCL in voxels of interest. The results of this study show that signal bleeding from EMCL can be substantially reduced in voxels from calf muscles by the application of a lipid extrapolation (LE) procedure (Haupt et al., Magn Reson Med 1996;35:678). The spectra of all voxels located within muscle tissue were fitted, and the metabolite values were assigned to one of 10 different muscles based on image segmentation. Significant IMCL differences between some muscles were obtained, with high values in m. soleus and two to three times lower values in the tibialis anterior, tibialis posterior, and gastrocnemius muscles. In addition to gross differences between muscles, significant intersubject differences were observed in both IMCL content and distribution over different muscles. A significant correlation between fiber orientation (obtained from orientation-dependent dipolar coupling of creatine and taurine resonances) and IMCL content was found, indicating that IMCL content is directly correlated to biomechanical properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During decades Distance Transforms have proven to be useful for many image processing applications, and more recently, they have started to be used in computer graphics environments. The goal of this paper is to propose a new technique based on Distance Transforms for detecting mesh elements which are close to the objects' external contour (from a given point of view), and using this information for weighting the approximation error which will be tolerated during the mesh simplification process. The obtained results are evaluated in two ways: visually and using an objective metric that measures the geometrical difference between two polygonal meshes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Statistical shape models are widely used in biomedical research. They are routinely implemented for automatic image segmentation or object identification in medical images. In these fields, however, the acquisition of the large training datasets, required to develop these models, is usually a time-consuming process. Even after this effort, the collections of datasets are often lost or mishandled resulting in replication of work. Objective: To solve these problems, the Virtual Skeleton Database (VSD) is proposed as a centralized storage system where the data necessary to build statistical shape models can be stored and shared. Methods: The VSD provides an online repository system tailored to the needs of the medical research community. The processing of the most common image file types, a statistical shape model framework, and an ontology-based search provide the generic tools to store, exchange, and retrieve digital medical datasets. The hosted data are accessible to the community, and collaborative research catalyzes their productivity. Results: To illustrate the need for an online repository for medical research, three exemplary projects of the VSD are presented: (1) an international collaboration to achieve improvement in cochlear surgery and implant optimization, (2) a population-based analysis of femoral fracture risk between genders, and (3) an online application developed for the evaluation and comparison of the segmentation of brain tumors. Conclusions: The VSD is a novel system for scientific collaboration for the medical image community with a data-centric concept and semantically driven search option for anatomical structures. The repository has been proven to be a useful tool for collaborative model building, as a resource for biomechanical population studies, or to enhance segmentation algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nematode Caenorhabditis elegans is a well-known model organism used to investigate fundamental questions in biology. Motility assays of this small roundworm are designed to study the relationships between genes and behavior. Commonly, motility analysis is used to classify nematode movements and characterize them quantitatively. Over the past years, C. elegans' motility has been studied across a wide range of environments, including crawling on substrates, swimming in fluids, and locomoting through microfluidic substrates. However, each environment often requires customized image processing tools relying on heuristic parameter tuning. In the present study, we propose a novel Multi-Environment Model Estimation (MEME) framework for automated image segmentation that is versatile across various environments. The MEME platform is constructed around the concept of Mixture of Gaussian (MOG) models, where statistical models for both the background environment and the nematode appearance are explicitly learned and used to accurately segment a target nematode. Our method is designed to simplify the burden often imposed on users; here, only a single image which includes a nematode in its environment must be provided for model learning. In addition, our platform enables the extraction of nematode ‘skeletons’ for straightforward motility quantification. We test our algorithm on various locomotive environments and compare performances with an intensity-based thresholding method. Overall, MEME outperforms the threshold-based approach for the overwhelming majority of cases examined. Ultimately, MEME provides researchers with an attractive platform for C. elegans' segmentation and ‘skeletonizing’ across a wide range of motility assays.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a non-conformal metric that generalizes the geodesic active contours approach for image segmentation. The new metric is obtained by adding to the Euclidean metric an additional term that penalizes the misalignment of the curve with the image gradient and multiplying the resulting metric by a conformal factor that depends on the edge intensity. In this way, a closer fitting to the edge direction results. The provided experimental results address the computation of the geodesics of the new metric by applying a gradient descent to externally provided curves. The good performance of the proposed techniques is demonstrated in comparison with other active contours methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we propose an image acquisition and processing methodology (framework) developed for performance in-field grapes and leaves detection and quantification, based on a six step methodology: 1) image segmentation through Fuzzy C-Means with Gustafson Kessel (FCM-GK) clustering; 2) obtaining of FCM-GK outputs (centroids) for acting as seeding for K-Means clustering; 3) Identification of the clusters generated by K-Means using a Support Vector Machine (SVM) classifier. 4) Performance of morphological operations over the grapes and leaves clusters in order to fill holes and to eliminate small pixels clusters; 5)Creation of a mosaic image by Scale-Invariant Feature Transform (SIFT) in order to avoid overlapping between images; 6) Calculation of the areas of leaves and grapes and finding of the centroids in the grape bunches. Image data are collected using a colour camera fixed to a mobile platform. This platform was developed to give a stabilized surface to guarantee that the images were acquired parallel to de vineyard rows. In this way, the platform avoids the distortion of the images that lead to poor estimation of the areas. Our preliminary results are promissory, although they still have shown that it is necessary to implement a camera stabilization system to avoid undesired camera movements, and also a parallel processing procedure in order to speed up the mosaicking process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper outlines an automatic computervision system for the identification of avena sterilis which is a special weed seed growing in cereal crops. The final goal is to reduce the quantity of herbicide to be sprayed as an important and necessary step for precision agriculture. So, only areas where the presence of weeds is important should be sprayed. The main problems for the identification of this kind of weed are its similar spectral signature with respect the crops and also its irregular distribution in the field. It has been designed a new strategy involving two processes: image segmentation and decision making. The image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and weeds. The decision making is based on the SupportVectorMachines and determines if a cell must be sprayed. The main findings of this paper are reflected in the combination of the segmentation and the SupportVectorMachines decision processes. Another important contribution of this approach is the minimum requirements of the system in terms of memory and computation power if compared with other previous works. The performance of the method is illustrated by comparative analysis against some existing strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a new method, oriented to crop row detection in images from maize fields with high weed pressure. The vision system is designed to be installed onboard a mobile agricultural vehicle, i.e. submitted to gyros, vibrations and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of three main processes: image segmentation, double thresholding, based on the Otsu’s method, and crop row detection. Image segmentation is based on the application of a vegetation index, the double thresholding achieves the separation between weeds and crops and the crop row detection applies least squares linear regression for line adjustment. Crop and weed separation becomes effective and the crop row detection can be favorably compared against the classical approach based on the Hough transform. Both gain effectiveness and accuracy thanks to the double thresholding that makes the main finding of the paper.