840 resultados para swarm behaviour
Resumo:
The metabolism of apomorphine is quite complex due to interactions with proteins and other tissue components that affect its pharmacokinetic profile. The electrochemical oxidation mechanism of apomorphine and of some synthesised apomorphine derivatives was studied. It was found to be related to the reaction of o-diphenol and tertiary amine groups and strongly dependent on pH.
Resumo:
Biphentrin, a known pyrethroid, was studied, aiming its removal from aqueous solutions by granulated cork sorption. Batch experiments, either for equilibrium or for kinetics, with two granulated cork sizes were performed and results were compared with those obtained with of activated carbon sorption. Langmuir and Freundlich adsorption isotherms were obtained both showing high linear correlations. Bifenthrin desorption was evaluated for cork and results varied with the granule size of sorbent. The results obtained in this work indicate that cork wastes may be used as a cheap natural sorbent for bifenthrin or similar compounds removal from wastewaters.
Resumo:
The electrochemical behaviour of the pesticide metam (MT) at a glassy carbon working electrode (GCE) and at a hanging mercury drop electrode (HMDE) was investigated. Different voltammetric techniques, including cyclic voltammetry (CV) and square wave voltammetry (SWV), were used. An anodic peak (independent of pH) at +1.46 V vs AgCl/Ag was observed in MTaqueous solution using the GCE. SWV calibration curves were plotted under optimized conditions (pH 2.5 and frequency 50 Hz), which showed a linear response for 17–29 mg L−1. Electrochemical reduction was also explored, using the HMDE. A well defined cathodic peak was recorded at −0.72 V vs AgCl/ Ag, dependent on pH. After optimizing the operating conditions (pH 10.1, frequency 150 Hz, potential deposition −0.20 V for 10 s), calibration curves was measured in the concentration range 2.5×10−1 to 1.0 mg L−1 using SWV. The electrochemical behaviour of this compound facilitated the development of a flow injection analysis (FIA) system with amperometric detection for the quantification of MT in commercial formulations and spiked water samples. An assessment of the optimal FIA conditions indicated that the best analytical results were obtained at a potential of +1.30 V, an injection volume of 207 μL and an overall flow rate of 2.4 ml min−1. Real samples were analysed via calibration curves over the concentration range 1.3×10−2 to 1.3 mg L−1. Recoveries from the real samples (spiked waters and commercial formulations) were between 97.4 and 105.5%. The precision of the proposed method was evaluated by assessing the relative standard deviation (RSD %) of ten consecutive determinations of one sample (1.0 mg L−1), and the value obtained was 1.5%.
Resumo:
Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly by accessing the final results. In the present paper, a different approach is proposed, by using Shannon entropy to analyzethe MOPSO dynamics along the algorithm execution. The results indicate that Shannon entropy can be used as an indicator of diversity and convergence for MOPSO problems.
Resumo:
Competitive electricity markets have arisen as a result of power-sector restructuration and power-system deregulation. The players participating in competitive electricity markets must define strategies and make decisions using all the available information and business opportunities.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.
Resumo:
Although power-line communication (PLC) is not a new technology, its use to support communication with timing requirements is still the focus of ongoing research. Recently, a new infrastructure was presented, intended for communication using power lines from a central location to geographically dispersed nodes using inexpensive devices. This new infrastructure uses a two-level hierarchical power-line system, together with an IP-based network. Within this infrastructure, in order to provide end-toend communication through the two levels of the powerline system, it is necessary to fully understand the behaviour of the underlying network layers. The masterslave behaviour of the PLC MAC, together with the inherent dynamic topology of power-line networks are important issues that must be fully characterised. Therefore, in this paper we present a simulation model which is being used to study and characterise the behaviour of power-line communication.
Resumo:
Collective behaviours can be observed in both natural and man-made systems composed of a large number of elemental subsystems. Typically, each elemental subsystem has its own dynamics but, whenever interaction between individuals occurs, the individual behaviours tend to be relaxed, and collective behaviours emerge. In this paper, the collective behaviour of a large-scale system composed of several coupled elemental particles is analysed. The dynamics of the particles are governed by the same type of equations but having different parameter values and initial conditions. Coupling between particles is based on statistical feedback, which means that each particle is affected by the average behaviour of its neighbours. It is shown that the global system may unveil several types of collective behaviours, corresponding to partial synchronisation, characterised by the existence of several clusters of synchronised subsystems, and global synchronisation between particles, where all the elemental particles synchronise completely.
Resumo:
Modelling the fundamental performance limits of wireless sensor networks (WSNs) is of paramount importance to understand the behaviour of WSN under worst case conditions and to make the appropriate design choices. In that direction, this paper contributes with a methodology for modelling cluster tree WSNs with a mobile sink. We propose closed form recurrent expressions for computing the worst case end to end delays, buffering and bandwidth requirements across any source-destination path in the cluster tree assuming error free channel. We show how to apply our theoretical results to the specific case of IEEE 802.15.4/ZigBee WSNs. Finally, we demonstrate the validity and analyze the accuracy of our methodology through a comprehensive experimental study, therefore validating the theoretical results through experimentation.
Resumo:
Gravity loads can affect a reinforced concrete structure's response to seismic actions, however, traditional procedures for testing the beam behaviour do not take this effect into consideration. An experimental campaign was carried out in order to assess the influence of the gravity load on RC beam connection to the column subjected to cyclic loading. The experiments included the imposition of a conventional quasi-static test protocol based on the imposition of a reverse cyclic displacement history and of an alternative cyclic test procedure starting from the gravity load effects. The test results are presented, compared and analysed in this paper. The imposition of a cyclic test procedure that included the gravity loads effects on the RC beam ends reproduces the demands on the beams' critical zones more realistically than the traditional procedure. The consideration of the vertical load effects in the test procedure led to an accumulation of negative (hogging) deformation. This phenomenon is sustained with the behaviour of a portal frame system under cyclic loads subject to a significant level of the vertical load, leading to the formation of unidirectional plastic hinges. In addition, the hysteretic behaviour of the RC beam ends tested was simulated numerically using the nonlinear structural analysis software - OpenSees. The beam-column model simulates the global element behaviour very well, as there is a reasonable approximation to the hysteretic loops obtained experimentally. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This work addresses both experimental and numerical analyses regarding the tensile behaviour of CFRP single-strap repairs. Two fundamental geometrical parameters were studied: overlap length and patch thickness. The numerical model used ABAQUS® software and a developed cohesive mixed-mode damage model adequate for ductile adhesives, and implemented within interface finite elements. Stress analyses and strength predictions were carried out. Experimental and numerical comparisons were performed on failure modes, failure load and equivalent stiffness of the repair. Good correlation was found between experimental and numerical results, showing that the proposed model can be successfully applied to bonded joints or repairs.
Resumo:
Laminate composite multi-cell structures have to support both axial and shear stresses when sustaining variable twist. Thus the properties and design of the laminate may not be the most adequate at all cross-sections to support the torsion imposed on the cells. In this work, the effect of some material and geometric parameters on the optimal mechanical behaviour of a multi-cell composite laminate structure is studied when torsion is present. A particle swarm optimization technique is used to maximize the multi-cell structure torsion constant that can be used to obtain the angle of twist of the composite laminate profile.
Resumo:
Functionally graded materials are a type of composite materials which are tailored to provide continuously varying properties, according to specific constituent's mixing distributions. These materials are known to provide superior thermal and mechanical performances when compared to the traditional laminated composites, because of this continuous properties variation characteristic, which enables among other advantages, smoother stresses distribution profiles. Therefore the growing trend on the use of these materials brings together the interest and the need for getting optimum configurations concerning to each specific application. In this work it is studied the use of particle swarm optimization technique for the maximization of a functionally graded sandwich beam bending stiffness. For this purpose, a set of case studies is analyzed, in order to enable to understand in a detailed way, how the different optimization parameters tuning can influence the whole process. It is also considered a re-initialization strategy, which is not a common approach in particle swarm optimization as far as it was possible to conclude from the published research works. As it will be shown, this strategy can provide good results and also present some advantages in some conditions. This work was developed and programmed on symbolic computation platform Maple 14. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Magneto-electro-elastic structures are built from materials that provide them the ability to convert in an interchangeable way, magnetic, electric and mechanical forms of energy. This characteristic can therefore provide an adaptive behaviour to a general configuration elastic structure, being commonly used in association with any type of composite material in an embedded or surface mounted mode, or by considering the usage of multiphase materials that enable achieving different magneto-electro-elastic properties. In a first stage of this work, a few cases studies will be considered to enable the validation of the model considered and the influence of the coupling characteristics of this type of adaptive structures. After that we consider the application of a recent computational intelligence technique, the differential evolution, in a deflection profile minimization problem. Studies on the influence of optimization parameters associated to the problem considered will be performed as well as the adoption of an adaptive scheme for the perturbation factor. Results are also compared with those obtained using an enhanced particle swarm optimization technique. (C) 2013 Elsevier Ltd. All rights reserved.