913 resultados para stress analysis
Resumo:
This work is to analyze the behavior of context concentrated stresses generated around a nozzle connected to a pressure vessel. For this analysis we used the finite element method via a computer interface, the software ANSYS WORKBENCH. It was first necessary to study and intensive training of the software used, and also a study of the ASME Code, Section VIII, which is responsible for the standards used in pressure vessels. We analyzed three cases, which differ primarily in the variation of the diameter of the nozzle in order to analyze the variation of the stresses according to the variation of the diameters. The nozzle diameters were 35, 75 and 105 mm. After the model designed vessel, a pressure was applied on the innervessel of 0.5 MPa. For the smallest diameter, was found the lowest tensions concentrated. Varying between 1 and 223 MPa. Increasing the diameter of the nozzle resulted in increased tensions concentrated around the junction nozzle /vessel. The maximum stresses increased by 78% when the value was increased in diameter from 35 to 75 mm. Since the increase in diameter from 75 to 105 mm, the values of the tensions increased around 43%. These figures emphasize that stress concentrations increased with increasing the diameter of the nozzles, but not linearly
Resumo:
The objective of this study was to develop a model that allows testing in the wind tunnel at high angles of attack and validates its most critical components by analyzing the results of simulations in finite element software. During the project this structure suffered major loads identified during the flight conditions and, from these, we calculated the stresses in critical regions defined as the parts of the model that have higher failure probabilities. All aspects associated with Load methods, mesh refining and stress analysis were taken into account in this approach. The selection of the analysis software was based on project needs, seeking greater ease of modeling and simulation. We opted for the software ANSYS® since the entire project is being developed in CAD platforms enabling a friendly integration between software's modeling and analysis
Resumo:
Introduction and Objective: Photoelasticity consists of an experimental technique of stress analysis. This technique is very used in most different areas including Dentistry. This literature review presents the several applications of photoelastic technique in Dentistry the several applications of photoelastic technique in Dentistry as well as its advantages and disadvantages. Literature review: Based on this method of analysis, it is possible the verification of the stress distribution and deformation in structures with complex geometry as maxilla and mandible. It can be used to evaluate the distribution of stress on several types of prosthesis as removable partial denture systems with different retention systems, conventional implant prosthesis, overdentures and Brånemark protocols. Moreover, photoelasticity can be used to assess the stress generated by various by various orthodontic movements, different orthodontic systems and different materials (orthodontic wires). In addition, it is used to analyze different defects of maxillectomy, splint types on traumatized tooth and post-core restoration methods. This technique can also be used to assess dental instruments such as evaluation of different designs of periodontal probe. Conclusion: The photoelastic analysis has been a technique of great importance in health area studies, more specifically in Dentistry. Based on this method of analysis, it is possible to measure the stress distribution and deformation in structures with complex geometry as maxilla and mandible.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Influence of morphological variables in photoelastic models with implants submitted to axial loading
Resumo:
Purpose: This study used 12 photoelastics models with different height and thickness to evaluate if the axial loading of 100N on implants changes the morphology of the photoelastic reflection. Methods: For the photoelastic analysis, the models were placed in a reflection polariscope for observation of the isochromatic fringes patterns. The formation of these fringes resulted from an axial load of 100N applied to the midpoint of the healing abutment attached to the implant with 10.0mm x 3.75mm (Conexão, Sistemas de Próteses, Brazil). The tension in each photoelastic model was monitored, photographed and observed using the software Phothoshop 7.0. For qualitative analysis, the area under the implant apex was measured including the green band of the second order fringe of each model using the software Image Tool. After comparison of the areas, the performance generated by each specimen was defined regarding the axial loading. Results: There were alterations in area with different height and thickness of the photoelastic models. It was observed that the group III (30mm in height) presented the smallest area. Conclusion: There was variation in the size of the areas analyzed for different height and thickness of the models and the morphology of the replica may directly influence the result in researches with photoelastic models.
Resumo:
The rehabilitation with mandibular distal extension removable partial dentures (DERPD) is complex and the use of implants has been improving the functioning of this approach. The insertion bony level around of the last support tooth is an aggravating factor, since it can harm the longevity of the treatment. Thus, the aim of this research was to evaluate the displacement tendency of a mandibular DERPD associated to an implant, with different insertion bony levels and different connections between the RPD and the support tooth, by finite element analysis. Eight models were made: MA - DERPD, incisal rest, no bony loss; MB - DERPD, distal plate, no bony loss; MC - DERPD, incisal rest, no bony loss, with implant and ERA system; MD - DERPD, distal plate, no bony loss, with implant and ERA system; ME - DERPD, incisal rest, bony loss; MF - DERPD, distal plate, bony loss; MG - DERPD, incisal rest, bony loss, with implant and ERA system; MH - DERPD, distal plate, bony loss, with implant and ERA system. Loads of 50 N in each peak were applied. Displacement maps were obtained and showed that implant favors this association and the bony loss harms the prognostic of the prosthesis. It is concluded that: the introduction of the implant with ERA system reduced the displacement tendency of the tooth and supporting structures; introduction of distal plate reduced the movement tendency of the support tooth; the decrease of the periodontal support didn't influence significantly the displacement tendency of the models with distal plate distal, but it influenced the models with distal incisal rest.
Resumo:
Selection of reference genes is an essential consideration to increase the precision and quality of relative expression analysis by the quantitative RT-PCR method. The stability of eight expressed sequence tags was evaluated to define potential reference genes to study the differential expression of common bean target genes under biotic (incompatible interaction between common bean and fungus Colletotrichum lindemuthianum) and abiotic (drought; salinity; cold temperature) stresses. The efficiency of amplification curves and quantification cycle (C (q)) were determined using LinRegPCR software. The stability of the candidate reference genes was obtained using geNorm and NormFinder software, whereas the normalization of differential expression of target genes [beta-1,3-glucanase 1 (BG1) gene for biotic stress and dehydration responsive element binding (DREB) gene for abiotic stress] was defined by REST software. High stability was obtained for insulin degrading enzyme (IDE), actin-11 (Act11), unknown 1 (Ukn1) and unknown 2 (Ukn2) genes during biotic stress, and for SKP1/ASK-interacting protein 16 (Skip16), Act11, Tubulin beta-8 (beta-Tub8) and Unk1 genes under abiotic stresses. However, IDE and Act11 were indicated as the best combination of reference genes for biotic stress analysis, whereas the Skip16 and Act11 genes were the best combination to study abiotic stress. These genes should be useful in the normalization of gene expression by RT-PCR analysis in common bean, the most important edible legume.
Resumo:
Citation only
Resumo:
The polychaete Nereis virens burrows through muddy sediments by exerting dorsoventral forces against the walls of its tongue-depressor- shaped burrow to extend an oblate hemispheroidal crack. Stress is concentrated at the crack tip, which extends when the stress intensity factor (K-I) exceeds the critical stress intensity factor (K-Ic). Relevant forces were measured in gelatin, an analog for elastic muds, by photoelastic stress analysis, and were 0.015 +/- 0.001 N (mean +/- s.d.;N= 5). Measured elastic moduli (E) for gelatin and sediment were used in finite element models to convert the forces in gelatin to those required in muds to maintain the same body shapes observed in gelatin. The force increases directly with increasing sediment stiffness, and is 0.16 N for measured sediment stiffness of E=2.7x10(4) Pa. This measurement of forces exerted by burrowers is the first that explicitly considers the mechanical behavior of the sediment. Calculated stress intensity factors fall within the range of critical values for gelatin and exceed those for sediment, showing that crack propagation is a mechanically feasible mechanism of burrowing. The pharynx extends anteriorly as it everts, extending the crack tip only as far as the anterior of the worm, consistent with wedge-driven fracture and drawing obvious parallels between soft-bodied burrowers and more rigid, wedge-shaped burrowers(i.e. clams). Our results raise questions about the reputed high energetic cost of burrowing and emphasize the need for better understanding of sediment mechanics to quantify external energy expenditure during burrowing.
Resumo:
The critical fracture toughness is a material parameter describing the resistance of a cracked body to further crack extension. It is an important parameter to simulate and predict the break-up behaviour of ice shelves from calving of single icebergs to the disintegration of entire ice shelves over a wide range of length scales. The fracture toughness values are calculated with equations that are derived from an elastic stress analysis. Additionally, an X-ray computer tomography (CT scanner) was used to identify the density as a function of depth. The critical fracture toughness of 91 Antarctic inland ice samples with densities between 840 to 870 kg/m**3 has been determined by applying a four-point-bending technique on single edge v-notched beam samples. The examined ice core was drilled 70m north of Kohnen Station, Dronnning Maud Land (75°00' S, 00°04' E, 2882 m).
Resumo:
La presente Tesis Doctoral aborda la introducción de la Partición de Unidad de Bernstein en la forma débil de Galerkin para la resolución de problemas de condiciones de contorno en el ámbito del análisis estructural. La familia de funciones base de Bernstein conforma un sistema generador del espacio de funciones polinómicas que permite construir aproximaciones numéricas para las que no se requiere la existencia de malla: las funciones de forma, de soporte global, dependen únicamente del orden de aproximación elegido y de la parametrización o mapping del dominio, estando las posiciones nodales implícitamente definidas. El desarrollo de la formulación está precedido por una revisión bibliográfica que, con su punto de partida en el Método de Elementos Finitos, recorre las principales técnicas de resolución sin malla de Ecuaciones Diferenciales en Derivadas Parciales, incluyendo los conocidos como Métodos Meshless y los métodos espectrales. En este contexto, en la Tesis se somete la aproximación Bernstein-Galerkin a validación en tests uni y bidimensionales clásicos de la Mecánica Estructural. Se estudian aspectos de la implementación tales como la consistencia, la capacidad de reproducción, la naturaleza no interpolante en la frontera, el planteamiento con refinamiento h-p o el acoplamiento con otras aproximaciones numéricas. Un bloque importante de la investigación se dedica al análisis de estrategias de optimización computacional, especialmente en lo referente a la reducción del tiempo de máquina asociado a la generación y operación con matrices llenas. Finalmente, se realiza aplicación a dos casos de referencia de estructuras aeronáuticas, el análisis de esfuerzos en un angular de material anisotrópico y la evaluación de factores de intensidad de esfuerzos de la Mecánica de Fractura mediante un modelo con Partición de Unidad de Bernstein acoplada a una malla de elementos finitos. ABSTRACT This Doctoral Thesis deals with the introduction of Bernstein Partition of Unity into Galerkin weak form to solve boundary value problems in the field of structural analysis. The family of Bernstein basis functions constitutes a spanning set of the space of polynomial functions that allows the construction of numerical approximations that do not require the presence of a mesh: the shape functions, which are globally-supported, are determined only by the selected approximation order and the parametrization or mapping of the domain, being the nodal positions implicitly defined. The exposition of the formulation is preceded by a revision of bibliography which begins with the review of the Finite Element Method and covers the main techniques to solve Partial Differential Equations without the use of mesh, including the so-called Meshless Methods and the spectral methods. In this context, in the Thesis the Bernstein-Galerkin approximation is subjected to validation in one- and two-dimensional classic benchmarks of Structural Mechanics. Implementation aspects such as consistency, reproduction capability, non-interpolating nature at boundaries, h-p refinement strategy or coupling with other numerical approximations are studied. An important part of the investigation focuses on the analysis and optimization of computational efficiency, mainly regarding the reduction of the CPU cost associated with the generation and handling of full matrices. Finally, application to two reference cases of aeronautic structures is performed: the stress analysis in an anisotropic angle part and the evaluation of stress intensity factors of Fracture Mechanics by means of a coupled Bernstein Partition of Unity - finite element mesh model.
Resumo:
Se presenta en este artículo un programa para cálculo mediante ordenador, de utilización frecuente en el Departamento de Estudios Experimentales de Presas del Labo¬ratorio Central. Este programa se refiere a presas bóvedas asimétricas de tres centros y determina: a) el replanteo geométrico de las mismas para su construcción en modelo reducido. b) la posición -punto de aplicación y dirección- de las cargas puntuales equivalentes a las acciones de peso propio y presión hidrostática, que se introducen en el modelo median¬te gatos hidráulicos. c) la directriz de la presa, dato necesario para un posible cálculo estático posterior. This paper presents a computer program currently used in the Department of Experimental Studies of Dams in the Laboratorio Central. This program concerns asymmetric arch dams of three centers and it determines: a) The geometrical definition of the arch dams for the scaled model construction. b) The position, acting point and direction of the punctual loads equivalent to the actions of self-weight and water pressure, which are applied to the model by means of hydraulic jacks. c) The middle surface of the dam, which later would be introduced for a stress analy¬sis of the dam itself
Resumo:
Este estudo avaliou a colagem de braquetes linguais nas faces linguais de pré-molares superiores com diferentes espessuras de PADs, confeccionados com a resina fotopolimerizável Transbond XT nas espessuras de 1,0 mm e 2,0 mm e comparando-os com a menor espessura possível. Foi utilizado o adesivo Sondhi Rapid Set para a colagem indireta. Avaliou-se a força de resistência sob cisalhamento cinco minutos após a colagem em uma máquina de ensaios mecânicos Kratos, com velocidade de cruzeta de 1,0 mm/min. A força média da resistência da colagem sob cisalhamento para o Grupo I foi de 9,69 MPa (DP 4,02 MPa), para o Grupo II foi de 6,15 MPa (DP 2,69 MPa) e para o Grupo III foi de 5,73 MPa (DP 1,62 MPa). O Grupo I, com menor espessura do PAD, apresentou força de resistência da colagem sob cisalhamento significativamente maior do que os Grupos II e III (PADs com 1,0 e 2,0 mm respectivamente). Estes por sua vez, não apresentaram diferença estatisticamente significante ao nível de p<0,05. O índice 1 de Adesivo Remanescente predominou nos Grupos I e II, caracterizando um maior número de fraturas do tipo adesiva. No Grupo 3 predominou o Índice 2, com fraturas do tipo coesiva.(AU)
Resumo:
Este estudo avaliou a colagem de braquetes linguais nas faces linguais de pré-molares superiores com diferentes espessuras de PADs, confeccionados com a resina fotopolimerizável Transbond XT nas espessuras de 1,0 mm e 2,0 mm e comparando-os com a menor espessura possível. Foi utilizado o adesivo Sondhi Rapid Set para a colagem indireta. Avaliou-se a força de resistência sob cisalhamento cinco minutos após a colagem em uma máquina de ensaios mecânicos Kratos, com velocidade de cruzeta de 1,0 mm/min. A força média da resistência da colagem sob cisalhamento para o Grupo I foi de 9,69 MPa (DP 4,02 MPa), para o Grupo II foi de 6,15 MPa (DP 2,69 MPa) e para o Grupo III foi de 5,73 MPa (DP 1,62 MPa). O Grupo I, com menor espessura do PAD, apresentou força de resistência da colagem sob cisalhamento significativamente maior do que os Grupos II e III (PADs com 1,0 e 2,0 mm respectivamente). Estes por sua vez, não apresentaram diferença estatisticamente significante ao nível de p<0,05. O índice 1 de Adesivo Remanescente predominou nos Grupos I e II, caracterizando um maior número de fraturas do tipo adesiva. No Grupo 3 predominou o Índice 2, com fraturas do tipo coesiva.(AU)