971 resultados para statistical mechanics many-body inverse problem graph-theory
Resumo:
Most network operators have considered reducing Label Switched Routers (LSR) label spaces (i.e. the number of labels that can be used) as a means of simplifying management of underlaying Virtual Private Networks (VPNs) and, hence, reducing operational expenditure (OPEX). This letter discusses the problem of reducing the label spaces in Multiprotocol Label Switched (MPLS) networks using label merging - better known as MultiPoint-to-Point (MP2P) connections. Because of its origins in IP, MP2P connections have been considered to have tree- shapes with Label Switched Paths (LSP) as branches. Due to this fact, previous works by many authors affirm that the problem of minimizing the label space using MP2P in MPLS - the Merging Problem - cannot be solved optimally with a polynomial algorithm (NP-complete), since it involves a hard- decision problem. However, in this letter, the Merging Problem is analyzed, from the perspective of MPLS, and it is deduced that tree-shapes in MP2P connections are irrelevant. By overriding this tree-shape consideration, it is possible to perform label merging in polynomial time. Based on how MPLS signaling works, this letter proposes an algorithm to compute the minimum number of labels using label merging: the Full Label Merging algorithm. As conclusion, we reclassify the Merging Problem as Polynomial-solvable, instead of NP-complete. In addition, simulation experiments confirm that without the tree-branch selection problem, more labels can be reduced
Resumo:
For the very large nonlinear dynamical systems that arise in a wide range of physical, biological and environmental problems, the data needed to initialize a numerical forecasting model are seldom available. To generate accurate estimates of the expected states of the system, both current and future, the technique of ‘data assimilation’ is used to combine the numerical model predictions with observations of the system measured over time. Assimilation of data is an inverse problem that for very large-scale systems is generally ill-posed. In four-dimensional variational assimilation schemes, the dynamical model equations provide constraints that act to spread information into data sparse regions, enabling the state of the system to be reconstructed accurately. The mechanism for this is not well understood. Singular value decomposition techniques are applied here to the observability matrix of the system in order to analyse the critical features in this process. Simplified models are used to demonstrate how information is propagated from observed regions into unobserved areas. The impact of the size of the observational noise and the temporal position of the observations is examined. The best signal-to-noise ratio needed to extract the most information from the observations is estimated using Tikhonov regularization theory. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
Optimal state estimation from given observations of a dynamical system by data assimilation is generally an ill-posed inverse problem. In order to solve the problem, a standard Tikhonov, or L2, regularization is used, based on certain statistical assumptions on the errors in the data. The regularization term constrains the estimate of the state to remain close to a prior estimate. In the presence of model error, this approach does not capture the initial state of the system accurately, as the initial state estimate is derived by minimizing the average error between the model predictions and the observations over a time window. Here we examine an alternative L1 regularization technique that has proved valuable in image processing. We show that for examples of flow with sharp fronts and shocks, the L1 regularization technique performs more accurately than standard L2 regularization.
Resumo:
By eliminating the short range negative divergence of the Debye–Hückel pair distribution function, but retaining the exponential charge screening known to operate at large interparticle separation, the thermodynamic properties of one-component plasmas of point ions or charged hard spheres can be well represented even in the strong coupling regime. Predicted electrostatic free energies agree within 5% of simulation data for typical Coulomb interactions up to a factor of 10 times the average kinetic energy. Here, this idea is extended to the general case of a uniform ionic mixture, comprising an arbitrary number of components, embedded in a rigid neutralizing background. The new theory is implemented in two ways: (i) by an unambiguous iterative algorithm that requires numerical methods and breaks the symmetry of cross correlation functions; and (ii) by invoking generalized matrix inverses that maintain symmetry and yield completely analytic solutions, but which are not uniquely determined. The extreme computational simplicity of the theory is attractive when considering applications to complex inhomogeneous fluids of charged particles.
Resumo:
Hamiltonian dynamics describes the evolution of conservative physical systems. Originally developed as a generalization of Newtonian mechanics, describing gravitationally driven motion from the simple pendulum to celestial mechanics, it also applies to such diverse areas of physics as quantum mechanics, quantum field theory, statistical mechanics, electromagnetism, and optics – in short, to any physical system for which dissipation is negligible. Dynamical meteorology consists of the fundamental laws of physics, including Newton’s second law. For many purposes, diabatic and viscous processes can be neglected and the equations are then conservative. (For example, in idealized modeling studies, dissipation is often only present for numerical reasons and is kept as small as possible.) In such cases dynamical meteorology obeys Hamiltonian dynamics. Even when nonconservative processes are not negligible, it often turns out that separate analysis of the conservative dynamics, which fully describes the nonlinear interactions, is essential for an understanding of the complete system, and the Hamiltonian description can play a useful role in this respect. Energy budgets and momentum transfer by waves are but two examples.
Resumo:
We study opinion dynamics in a population of interacting adaptive agents voting on a set of issues represented by vectors. We consider agents who can classify issues into one of two categories and can arrive at their opinions using an adaptive algorithm. Adaptation comes from learning and the information for the learning process comes from interacting with other neighboring agents and trying to change the internal state in order to concur with their opinions. The change in the internal state is driven by the information contained in the issue and in the opinion of the other agent. We present results in a simple yet rich context where each agent uses a Boolean perceptron to state their opinion. If the update occurs with information asynchronously exchanged among pairs of agents, then the typical case, if the number of issues is kept small, is the evolution into a society torn by the emergence of factions with extreme opposite beliefs. This occurs even when seeking consensus with agents with opposite opinions. If the number of issues is large, the dynamics becomes trapped, the society does not evolve into factions and a distribution of moderate opinions is observed. The synchronous case is technically simpler and is studied by formulating the problem in terms of differential equations that describe the evolution of order parameters that measure the consensus between pairs of agents. We show that for a large number of issues and unidirectional information flow, global consensus is a fixed point; however, the approach to this consensus is glassy for large societies.
Resumo:
We present the first-principle electronic structure calculation on an amorphous material including many-body corrections within the GW approximation. We show that the inclusion of the local field effects in the exchange-correlation potential is crucial to quantitatively describe amorphous systems and defect states. We show that the mobility gap of amorphous silica coincides with the band gap of quartz, contrary to the traditional picture and the densityfunctional theory results. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Complex networks exist in many areas of science such as biology, neuroscience, engineering, and sociology. The growing development of this area has led to the introduction of several topological and dynamical measurements, which describe and quantify the structure of networks. Such characterization is essential not only for the modeling of real systems but also for the study of dynamic processes that may take place in them. However, it is not easy to use several measurements for the analysis of complex networks, due to the correlation between them and the difficulty of their visualization. To overcome these limitations, we propose an effective and comprehensive approach for the analysis of complex networks, which allows the visualization of several measurements in a few projections that contain the largest data variance and the classification of networks into three levels of detail, vertices, communities, and the global topology. We also demonstrate the efficiency and the universality of the proposed methods in a series of real-world networks in the three levels.
Resumo:
In this work we study, under the Stratonovich definition, the problem of the damped oscillatory massive particle subject to a heterogeneous Poisson noise characterized by a rate of events, lambda(t), and a magnitude, Phi, following an exponential distribution. We tackle the problem by performing exact time averages over the noise in a similar way to previous works analysing the problem of the Brownian particle. From this procedure we obtain the long-term equilibrium distributions of position and velocity as well as analytical asymptotic expressions for the injection and dissipation of energy terms. Considerations on the emergence of stochastic resonance in this type of system are also set forth.
Resumo:
We generalize the theory of Kobayashi and Oliva (On the Birkhoff Approach to Classical Mechanics. Resenhas do Instituto de Matematica e Estatistica da Universidade de Sao Paulo, 2003) to infinite dimensional Banach manifolds with a view towards applications in partial differential equations.
Resumo:
We address the generalization of thermodynamic quantity q-deformed by q-algebra that describes a general algebra for bosons and fermions . The motivation for our study stems from an interest to strengthen our initial ideas, and a possible experimental application. On our journey, we met a generalization of the recently proposed formalism of the q-calculus, which is the application of a generalized sequence described by two parameters deformation positive real independent and q1 and q2, known for Fibonacci oscillators . We apply the wellknown problem of Landau diamagnetism immersed in a space D-dimensional, which still generates good discussions by its nature, and dependence with the number of dimensions D, enables us future extend its application to systems extra-dimensional, such as Modern Cosmology, Particle Physics and String Theory. We compare our results with some experimentally obtained performing major equity. We also use the formalism of the oscillators to Einstein and Debye solid, strengthening the interpretation of the q-deformation acting as a factor of disturbance or impurity in a given system, modifying the properties of the same. Our results show that the insertion of two parameters of disorder, allowed a wider range of adjustment , i.e., enabling change only the desired property, e.g., the thermal conductivity of a same element without the waste essence
Resumo:
The determination of a specific orbit and the procedure to calculate orbital maneuvers of artificial satellites are problems of extreme importance in the study of orbital mechanics. Therefore, the transferring problem of a spaceship from one orbit to another, and the attention due to this subject has in increased during the last years. Many applications can be found in several space activities, for example, to put a satellite in a geostationary orbit, to change the position of a spaceship, to maintain a specific satellite's orbit, in the design of an interplanetary mission, and others. The Brazilian Satellite SCD-1 (Data Collecting Satellite) will be used as example in this paper. It is the first satellite developed entirely in Brazil, and it remains in operation to this date. SCD-1 was designed, developed, built, and tested by Brazilian scientists, engineers, and technicians working at INPE (National Institute for Space Research, and in Brazilian Industries. During the lifetime, it might be necessary do some complementary maneuvers, being this one either an orbital transferring, or just to make periodical corrections. The purpose of transferring problem is to change the position, velocity and the satellite's mass to a new pre determined state. This transfer can be totally linked (in the case of "Rendezvous") or partially free (free time, free final velocity, etc). In the global case, the direction, the orientation and the magnitude of the thrust to be applied must be chosen, respecting the equipment's limit. In order to make this transferring, either sub-optimal or optimal maneuvers may be used. In the present study, only the sub-optimal will be shown. Hence, this method will simplify the direction of thrust application, to allow a fast calculation that may be used in real time, with a very fast processing. The thrust application direction to be applied will be assumed small and constant, and the purpose of this paper is to find the time interval that the thrust is applied. This paper is basically divided into three parts: during the first one the sub-optimal maneuver is explained and detailed, the second presents the Satellite SCD-1, and finally the last part shows the results using the sub-optimal maneuver applied to the Brazilian Satellite.
Resumo:
We apply the general principles of effective field theories to the construction of effective interactions suitable for few- and many-body calculations in a no-core shell model framework. We calculate the spectrum of systems with three and four two-component fermions in a harmonic trap. In the unitary limit, we find that three-particle results are within 10% of known semianalytical values even in small model spaces. The method is very general, and can be readily extended to other regimes, more particles, different species (e.g., protons and neutrons in nuclear physics), or more-component fermions (as well as bosons). As an illustration, we present calculations of the lowest-energy three-fermion states away from the unitary limit and find a possible inversion of parity in the ground state in the limit of trap size large compared to the scattering length. Furthermore, we investigate the lowest positive-parity states for four fermions, although we are limited by the dimensions we can currently handle in this case.
Resumo:
A nonvanishing cosmological term in Einstein's equations implies a nonvanishing spacetime curvature even in the absence of any kind of matter. It would, in consequence, affect many of the underlying kinematic tenets of physical theory. The usual commutative spacetime translations of the Poincare group would be replaced by the mixed conformal translations of the de Sitter group, leading to obvious alterations in elementary concepts such as time, energy and momentum. Although negligible at small scales, such modifications may come to have important consequences both in the large and for the inflationary picture of the early Universe. A qualitative discussion is presented, which suggests deep changes in Hamiltonian, Quantum and Statistical Mechanics. In the primeval universe as described by the standard cosmological model, in particular, the equations of state of the matter sources could be quite different from those usually introduced.
Resumo:
Regarding the Pauli principle in quantum field theory and in many-body quantum mechanics, Feynman advocated that Pauli's exclusion principle can be completely ignored in intermediate states of perturbation theory. He observed that all virtual processes (of the same order) that violate the Pauli principle cancel out. Feynman accordingly introduced a prescription, which is to disregard the Pauli principle in all intermediate processes. This ingenious trick is of crucial importance in the Feynman diagram technique. We show, however, an example in which Feynman's prescription fails. This casts doubts on the general validity of Feynman's prescription. [S1050-2947(99)04604-1].