985 resultados para static random access memory
Resumo:
Neste trabalho nos propomos a fazer um estudo acerca da potencialidade de condução eletrônica no polímero BDT (1,3-benzoditiol 4H-ciclopenta[2,1-b:3,4b’]). O estudo usual de polímeros conjugados é feito de modo a obter sua densidade de estados com diversos tipos e níveis de dopagem. O método de Huckel é o mais utilizado e se baseia na separabilidade das ligações sigma e pi que é possível quando a molécula estudada é plana. Os polímeros conjugados são em sua maioria planos e estão inseridos nesta aproximação. O monômero do BDT apresenta sua geometria fora do plano por apresentar ligações com orbitais sp3. Para contornar esse problema foi desenvolvido o programa B3J, que considera todos os orbitais de valencia (s, px, py e pz). O programa B3J calcula a densidade de estados de sistemas poliméricos. O estudo das bandas do BDT foi feito com este software. Calculamos a densidade de estados do sistema neutro e com diversos níveis de dopagem, com distribuição aleatória e ordenada dos defeitos, dopagem do tipo n e do tipo p. O comportamento do quadrado do coeficiente da expansão da função de onda foi obtido para polímeros de até 20 monômeros. Estes cálculos foram obtidos com geometrias dos métodos AM1 e PM3. Obtivemos os espectros de absorção de oligômeros a fim de inferir seu comportamento para um polímero. Foram utilizados cálculos de otimização de geometria através dos métodos semi-empíricos AM1 e PM3 e ZINDO/S e o método DFT. Em outro objetivo desta monografia há o estudo do aproveitamento de tetrâmeros de BDT como dispositivos eletrônicos. Tais oligômeros foram otimizados em diversos valores de potencial elétrico, com a inserção em suas cadeias de moléculas doadoras e aceitadoras para induzir um aumento no momento de dipolo da mesma.
Resumo:
Neste trabalho, a decomposição em valores singulares (DVS) de uma matriz A, n x m, que representa a anomalia magnética, é vista como um método de filtragem bidimensional de coerência que separa informações correlacionáveis e não correlacionáveis contidas na matriz de dados magnéticos A. O filtro DVS é definido através da expansão da matriz A em autoimagens e valores singulares. Cada autoimagem é dada pelo produto escalar dos vetores de base, autovetores, associados aos problemas de autovalor e autovetor das matrizes de covariância ATA e AAT. Este método de filtragem se baseia no fato de que as autoimagens associadas a grandes valores singulares concentram a maior parte da informação correlacionável presente nos dados, enquanto que a parte não correlacionada, presumidamente constituída de ruídos causados por fontes magnéticas externas, ruídos introduzidos pelo processo de medida, estão concentrados nas autoimagens restantes. Utilizamos este método em diferentes exemplos de dados magnéticos sintéticos. Posteriormente, o método foi aplicado a dados do aerolevantamento feito pela PETROBRÁS no Projeto Carauari-Norte (Bacia do Solimões), para analisarmos a potencialidade deste na identificação, eliminação ou atenuação de ruídos e como um possível método de realçar feições particulares da anomalia geradas por fontes profundas e rasas. Este trabalho apresenta também a possibilidade de introduzir um deslocamento estático ou dinâmico nos perfis magnéticos, com a finalidade de aumentar a correlação (coerência) entre eles, permitindo assim concentrar o máximo possível do sinal correlacionável nas poucas primeiras autoimagens. Outro aspecto muito importante desta expansão da matriz de dados em autoimagens e valores singulares foi o de mostrar, sob o ponto de vista computacional, que a armazenagem dos dados contidos na matriz, que exige uma quantidade n x m de endereços de memória, pode ser diminuída consideravelmente utilizando p autoimagens. Assim o número de endereços de memória cai para p x (n + m + 1), sem alterar a anomalia, na reprodução praticamente perfeita. Dessa forma, concluímos que uma escolha apropriada do número e dos índices das autoimagens usadas na decomposição mostra potencialidade do método no processamento de dados magnéticos.
Resumo:
The objective of this study was to investigate the influence of previous active static stretch on the peak torque (PT) and rate of force development (TDF) during isokinetic concentric contractions at 60 and 180.s-1 in active individuals. Twelve active subjects with ages between 18 and 30 years participated of this study. The individuals were submitted in different days to the following tests: 1) Familiarization session to the isokinetic dynamometer; 2) Five maximal isokinetic concentric contractions for knee extensors at each angular velocity (60 and 180.s-1) to determine PT and TDF (Control), and; 3) Two active static stretching exercises for the dominant leg extensors (10 x 30 s for each exercise, with 20 s of rest). After the stretching, the isokinetic test was repeated (Post-Stretching). The conditions 2 and 3 were performed in random order. There was no significant modification after the stretch exercises on the PT, angle and time at which the PT was attained, at 60 and 180º.s-1. In the same way, there was no significant modification on the TDF and angle at which the maximal TDF was attained in both angular speeds. In other way, the time to attain maximal TDF (TTDF) at 180º.s-1 was significantly lower after the stretching (Pre - 98.3 ± 27.5 ms and Post - 86.6 ± 30.2 ms). There was significant modification on the torque (60 and 180º.s-1) and time (60º.s-1) at different delta of angle variations, obtained at 60º.s-1 at Control and Post-Stretching conditions. However, there was significant reduction of time after the stretching exercises on delta of angle variations of 90-88º (Pre - 46.6 ± 6.5 ms and Post - 44.1 ± 5.1 ms), 88-85º (Pre - 65.8 ± 7.9 ms and Post - 63.3 ± 4.9 ms) and 85-80º (Pre - 93.3 ± 7.7 ms and Post - 90.0 ± 4.2 ms) at 180º.s-1. With base on these data, it is possible to conclude that PT and TDF do not modify after static stretching, irrespectively on the speed...(Complete abstract click electronic access below)
Resumo:
At present the prediction and characterization of the emission output of a diffusive random laser remains a challenge, despite the variety of investigated materials and theoretical interpretations given up to now. Here, a new mode selection method, based on spatial filtering and ultrafast detection, which allows to separate individual lasing modes and follow their temporal evolution is presented. In particular, the work explores the random laser behavior of a ground powder of an organic-inorganic hybrid compound based on Rhodamine B incorporated into a di-ureasil host. The experimental approach gives direct access to the mode structure and dynamics, shows clear modal relaxation oscillations, and illustrates the lasing modes stochastic behavior of this diffusive scattering system. The effect of the excitation energy on its modal density is also investigated. Finally, imaging measurements reveal the dominant role of diffusion over amplification processes in this kind of unconventional lasers. (C) 2015 Optical Society of America
Resumo:
The saccadic paradigm has been used to investigate specific cortical networks involving visuospatial attention. We examined whether asymmetry in theta and beta band differentiates the role of the hemispheres during the execution of two different prosacadic conditions: a fixed condition, where the stimulus was presented at the same location; and a random condition, where the stimulus was unpredictable. Twelve healthy volunteers (3 male; mean age: 26.25) performed the task while their brain activity pattern was recorded using quantitative electroencephalography. We did not find any significant difference for beta, slow- and fast-alpha frequencies for the pairs of electrodes analyzed. The results for theta band showed a superiority of the left hemisphere in the frontal region when responding to the random condition on the right, which is related to the planning and selection of responses, and also a greater activation of the right hemisphere during the random condition, in the occipital region, related to the identification and recognition of patterns. These results indicate that asymmetries in the premotor area and the occipital cortex differentiate memory- and stimulus-driven tasks. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This study aimed at analyzing the relationship between slow- and fast-alpha asymmetry within frontal cortex and the planning, execution and voluntary control of saccadic eye movements (SEM), and quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 12 healthy participants performing a fixed (i.e., memory-driven) and a random SEM (i.e., stimulus-driven) condition. We find main effects for SEM condition in slow- and fast-alpha asymmetry at electrodes F3-F4, which are located over premotor cortex, specifically a negative asymmetry between conditions. When analyzing electrodes F7-F8, which are located over prefrontal cortex, we found a main effect for condition in slow-alpha asymmetry, particularly a positive asymmetry between conditions. In conclusion, the present approach supports the association of slow- and fast-alpha bands with the planning and preparation of SEM, and the specific role of these sub-bands for both, the attention network and the coordination and integration of sensory information with a (oculo)-motor response. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Studies of subjective time have adopted different methods to understand different processes of time perception. Four sculptures, with implied movement ranked as 1.5-, 3.0-, 4.5-, and 6.0-point stimuli on the Body Movement Ranking Scale, were randomly presented to 42 university students untrained in visual arts and ballet. Participants were allowed to observe the images for any length of time (exploration time) and, immediately after each image was observed, recorded the duration as they perceived it. The results of temporal ratio (exploration time/time estimation) showed that exploration time of images also affected perception of time, i.e., the subjective time for sculptures representing implied movement were overestimated.\
Resumo:
A non-Markovian one-dimensional random walk model is studied with emphasis on the phase-diagram, showing all the diffusion regimes, along with the exactly determined critical lines. The model, known as the Alzheimer walk, is endowed with memory-controlled diffusion, responsible for the model's long-range correlations, and is characterized by a rich variety of diffusive regimes. The importance of this model is that superdiffusion arises due not to memory per se, but rather also due to loss of memory. The recently reported numerically and analytically estimated values for the Hurst exponent are hereby reviewed. We report the finding of two, previously overlooked, phases, namely, evanescent log-periodic diffusion and log-periodic diffusion with escape, both with Hurst exponent H = 1/2. In the former, the log-periodicity gets damped, whereas in the latter the first moment diverges. These phases further enrich the already intricate phase diagram. The results are discussed in the context of phase transitions, aging phenomena, and symmetry breaking.
Resumo:
Abstract Background Although B cells are important as antigen presenting cells (APC) during the immune response, their role in DNA vaccination models is unknown. Methods In this study in vitro and in vivo experiments were performed to evaluate the ability of B cells to protect mice against Mycobacterium tuberculosis challenge. Results In vitro and in vivo studies showed that B cells efficiently present antigens after naked plasmid pcDNA3 encoding M. leprae 65-kDa heat shock protein (pcDNA3-Hsp65) internalization and protect B knock-out (BKO) mice against Mycobacterium tuberculosis infection. pcDNA3-Hsp65-transfected B cells adoptively transferred into BKO mice rescued the memory phenotypes and reduced the number of CFU compared to wild-type mice. Conclusions These data not only suggest that B cells play an important role in the induction of CD8 T cells but also that they improve bacterial clearance in DNA vaccine model.
Resumo:
Os arquivos do item estão no formato DAISY
Resumo:
Os arquivos do item estão no formato DAISY
Resumo:
Os arquivos do item estão no formato DAISY A mostra Conhecimento: custódia e acesso integra as comemorações dos 30 anos do Sistema Integrado de Bibliotecas da Universidade de São Paulo, SIBiUSP.
Resumo:
The University of São Paulo celebrates its Integrated Library System 30th anniversary with an exhibition, discussing the problems of retrieval, preservation and access to knowledge resulting from the exceptional changes ICTs produce in contemporary society. It opens up discussions on the main function of the ancient library institution, reinforces its relevance and reflects on technical tools and social practices that make information and basic raw material accessible, generating new forms of knowledge. About the future library, it´s a call for reflection on how the brilliant minds of the past projected into the future, which for us are the achievements of the present. The future has already started and expects each one to exercise inventiveness and determination to build it in a human and collaborative sense.
Resumo:
The inherent stochastic character of most of the physical quantities involved in engineering models has led to an always increasing interest for probabilistic analysis. Many approaches to stochastic analysis have been proposed. However, it is widely acknowledged that the only universal method available to solve accurately any kind of stochastic mechanics problem is Monte Carlo Simulation. One of the key parts in the implementation of this technique is the accurate and efficient generation of samples of the random processes and fields involved in the problem at hand. In the present thesis an original method for the simulation of homogeneous, multi-dimensional, multi-variate, non-Gaussian random fields is proposed. The algorithm has proved to be very accurate in matching both the target spectrum and the marginal probability. The computational efficiency and robustness are very good too, even when dealing with strongly non-Gaussian distributions. What is more, the resulting samples posses all the relevant, welldefined and desired properties of “translation fields”, including crossing rates and distributions of extremes. The topic of the second part of the thesis lies in the field of non-destructive parametric structural identification. Its objective is to evaluate the mechanical characteristics of constituent bars in existing truss structures, using static loads and strain measurements. In the cases of missing data and of damages that interest only a small portion of the bar, Genetic Algorithm have proved to be an effective tool to solve the problem.
Resumo:
This dissertation concerns active fibre-reinforced composites with embedded shape memory alloy wires. The structural application of active materials allows to develop adaptive structures which actively respond to changes in the environment, such as morphing structures, self-healing structures and power harvesting devices. In particular, shape memory alloy actuators integrated within a composite actively control the structural shape or stiffness, thus influencing the composite static and dynamic properties. Envisaged applications include, among others, the prevention of thermal buckling of the outer skin of air vehicles, shape changes in panels for improved aerodynamic characteristics and the deployment of large space structures. The study and design of active composites is a complex and multidisciplinary topic, requiring in-depth understanding of both the coupled behaviour of active materials and the interaction between the different composite constituents. Both fibre-reinforced composites and shape memory alloys are extremely active research topics, whose modelling and experimental characterisation still present a number of open problems. Thus, while this dissertation focuses on active composites, some of the research results presented here can be usefully applied to traditional fibre-reinforced composites or other shape memory alloy applications. The dissertation is composed of four chapters. In the first chapter, active fibre-reinforced composites are introduced by giving an overview of the most common choices available for the reinforcement, matrix and production process, together with a brief introduction and classification of active materials. The second chapter presents a number of original contributions regarding the modelling of fibre-reinforced composites. Different two-dimensional laminate theories are derived from a parent three-dimensional theory, introducing a procedure for the a posteriori reconstruction of transverse stresses along the laminate thickness. Accurate through the thickness stresses are crucial for the composite modelling as they are responsible for some common failure mechanisms. A new finite element based on the First-order Shear Deformation Theory and a hybrid stress approach is proposed for the numerical solution of the two-dimensional laminate problem. The element is simple and computationally efficient. The transverse stresses through the laminate thickness are reconstructed starting from a general finite element solution. A two stages procedure is devised, based on Recovery by Compatibility in Patches and three-dimensional equilibrium. Finally, the determination of the elastic parameters of laminated structures via numerical-experimental Bayesian techniques is investigated. Two different estimators are analysed and compared, leading to the definition of an alternative procedure to improve convergence of the estimation process. The third chapter focuses on shape memory alloys, describing their properties and applications. A number of constitutive models proposed in the literature, both one-dimensional and three-dimensional, are critically discussed and compared, underlining their potential and limitations, which are mainly related to the definition of the phase diagram and the choice of internal variables. Some new experimental results on shape memory alloy material characterisation are also presented. These experimental observations display some features of the shape memory alloy behaviour which are generally not included in the current models, thus some ideas are proposed for the development of a new constitutive model. The fourth chapter, finally, focuses on active composite plates with embedded shape memory alloy wires. A number of di®erent approaches can be used to predict the behaviour of such structures, each model presenting different advantages and drawbacks related to complexity and versatility. A simple model able to describe both shape and stiffness control configurations within the same context is proposed and implemented. The model is then validated considering the shape control configuration, which is the most sensitive to model parameters. The experimental work is divided in two parts. In the first part, an active composite is built by gluing prestrained shape memory alloy wires on a carbon fibre laminate strip. This structure is relatively simple to build, however it is useful in order to experimentally demonstrate the feasibility of the concept proposed in the first part of the chapter. In the second part, the making of a fibre-reinforced composite with embedded shape memory alloy wires is investigated, considering different possible choices of materials and manufacturing processes. Although a number of technological issues still need to be faced, the experimental results allow to demonstrate the mechanism of shape control via embedded shape memory alloy wires, while showing a good agreement with the proposed model predictions.