998 resultados para skin surgery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most researches that have been done until today about the beneficial effects of hariparoha (Pothomorphe umbellata L. Miq) have been done with root extract of this species, but the use in large scale would compromise the sustainable exploration of this natutral resource. In this sense, the utilization of pariparoha leaves, substituting the roots, in the cosmetic industry does not put in risk the existence of the species. In this work the concentration of 4-nerolidyl-cathecol (4-NC) in leaf extract was determined by the analytical methodology validated in our laboratory. The concentration of 4-NC in leaf extract was around 30% less than that of root extract, obtained in the same way. Concerning the study of the photostability of a leaves extract solution containing 4-NC did not demonstrate meaningful alterations in the spectrometry, profile after 2 hours of exposure under UVB radiation, showing its stability under this conditions. Metalloproteinases (MMPs) cure endopeptidases that are zinc-dependent, involved in remodeling extracellular matrix (ECM), that are important in the appearance of typical photoaging wrinkles. In this work the capacity of leaf extract of P. umbellata to inhibit MMP-2 and 9 activities of hairless mouse skin in vitro by zymography gel was also evalutated. The leaf extract (0,1 mg/mL) inhibit in 80% activity of this enzymes, according to the densitometric zymography evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sunless tanning formulas have become increasingly popular in recent years for their ability to give people convincing tans without the dangers of skin cancer. Most sunless tanners currently on the market contain dihydroxyacetone (DHA), a keto sugar with three carbons. The temporary pigment provided by these formulasis designed to resemble a UV-induced tan. This study evaluated the effectiveness of carbomer gels and cold process self emulsifying bases on skin pigmentation, using different concentrations of a chemical system composed of DHA and N-acetyl tyrosine, which are found in moulted snake skins and their effectiveness was tested by Mexameter (R) MX 18. Eight different sunless tanning formulas were developed, four of which were gels and four of which were emulsions (base, base plus 4.0%, 5.0% and 6.0% (w/w) of a system of DHA and N-acetyl tyrosine). Tests to determine the extent of artificial tanning were done by applying 30 mg cm(-2) of each formula onto standard sizes of moulted snake skin (2.0 cm x 3.0 cm). A Mexameter (R) MX 18 was used to evaluate the extent of coloration in the moulted snake skin at T(0) (before the application) and after 24, 48, 72, 168, 192 and 216 h. The moulted snake skins can be used as an alternative membrane model for in vitro sunless tanning efficacy tests due to their similarity to the human stratum corneum. The DHA concentration was found to influence the initiation of the pigmentation in both sunless tanning systems (emulsion and gel) as well as the time required to increases by a given amount on the tanning index. In the emulsion system, the DHA concentration also influenced the final value on the tanning index. The type of system (emulsion or gel) has no influence on the final value in the tanning index after 216 h for samples with the same DHA concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory analysis is a precise and descriptive measuring technique to quantify human responses to stimuli. Odor, one of these stimuli, is basically the result of the interaction between a chemical stimulus and the olfactory receptor system, which can be described using a number of different dimensions and measures through different sensory tests: threshold, intensity and quality. To measure fragrance performance on the skin, these parameters are very important, but the main attribute to be evaluated is substantivity, thus the importance of the sensory scale chosen to measure perception, discriminate different intensities and determine the substantivity of the fragrance. Some studies comparing the labeled magnitude scale (LMS) with other magnitude scales and their derivations showed that the use of the LMS scale to measure fragrance intensity could semantically understand the intensity of the stimulus. Tests using this scale confirmed the applicability and efficiency of the LMS. PRACTICAL APPLICATIONS The objective of this article is to review the techniques used to measure odor and fragrance intensities applied on the skin. The review shows general sensory techniques and their goals, the newest olfactory mechanism and its contribution to sensory evaluation and which attributes should be considered to measure odor. Substantivity/retentivity or longevity can be regarded as the most important attributes if you want to measure fragrance performance on the skin. Past studies showed different scales tested to measure odor, and some of them demonstrated that the labeled magnitude scale is very suitable to measure fragrance on the skin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Papain is a thiol proteolytic enzyme widely used in dermatology that found applications in wound treatment. Recently, papain was also used as absorption enhancer which can modify the peptide/ protein material in the bilayer domain. We investigated papain safety using human skin that was exposed to papain in vitro at different times: 4, 24 and 48 hours. The samples were examined using Light and Transmission Electron Microscopy (TEM) to study of the mechanisms involved in enhancer-skin interaction. After 24 hours, changes occurred in corneosomes. However, samples of 48 hours did not show major changes in agreement with the control. These findings indicated that papain could be used safely onto the skin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prominent nitric oxide (NO) donor [Ru(terpy)(bdqi)NO](PF(6))(3) has been synthesized and evaluated with respect to noteworthy biological effects due to its NO photorelease, including vascular relaxation and melanoma cell culture toxicity. The potential for delivering NO in therapeutic quantities is tenable since the nitrosyl ruthenium complex (NRC) must first reach the ""target tissue"" and then release the NO upon stimulus. In this context. NRC-loaded lipid carriers were developed and characterized to further explore its topical administration for applications such as skin cancer treatment. NRC-loaded solid lipid nanoparticles (SLN) and nanostructured lipid carriers were prepared via the microemulsification method, with average diameters of 275 +/- 15 nm and 211 +/- 31 nm and zeta potentials of -40.7 +/- 10.4 mV and -50.0 +/- 7.5 mV, respectively. In vitro kinetic studies of NRC release from nanoparticles showed sustained release of NRC from the lipid carriers and illustrated the influence of the release medium and the lyophilization process. Stability studies showed that NO is released from NRC as a function of temperature and time and due to skin contact. The encapsulation of NRC in SLN followed by its lyophilization, significantly improved the complex stability. Furthermore, of particular interest was the fact that in the NO photorelease study, the NO release from the NRC-loaded SLN was approximately twice that of just NRC in solution. NRC-loaded SLN performs well enough at releasing and protecting NO degradation in vitro that it is a promising carrier for topical delivery of NO. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) is a gaseous molecule that has specific functions dictated by its localization and its kinetics of release. As NO-donors have a range of potential uses in the skin, much attention has been paid to the development of topical NO delivery systems. The aim of this work was to study the release rate and the skin penetration of the NO-donor cis[Ru(NO(2))(bpy)(2)(4-pic)](+) from different gel formulations and their potential as topical NO delivery systems under light stimuli. Among the formulations developed, the anionic gel retarded the nitro-ruthenium complex diffusion and also obstructed NO release after light irradiation. On the other hand, NO release before light irradiation was observed when the complex was dispersed in the cationic chitosan gel, possibly due to oxi-redox reactions between the amino groups of the polymer and the drug molecule. Finally, the non-ionic gel released the NO after light irradiation to the same extent as a drug aqueous solution at the same pH. The drug dispersed in this gel also penetrated into the stratum corneum skin layer, and the nitro-ruthenium complex present in the skin was able to release the NO after light stimuli, suggesting the potential use of this formulation as a topical NO delivery system. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, rapid and sensitive analytical procedure for the measurement of imiquimod in skin samples after in vitro penetration studies has been developed and validated. In vitro penetration studies were carried out in Franz diffusion cells with porcine skin. Tape stripping technique was used to separate the stratum corneum (SC) from the viable epidermis and dermis. Imiquimod was extracted from skin samples using a 7:3 (v/v) methanol:acetate buffer (100 mm, pH 4.0) solution and ultrasonication. Imiquimod was analyzed by H-PLC using C(8) column and UV detection at 242 ran. The mobile phase used was acetonitrile:acetate buffer (pH 4.0, 100 mM):diethylamine (30:69.85:0.15, v/v) with flow rate 1 mL/min. Imiquimod eluted at 4.1 min and the running time was limited to 6.0 min. The procedure was linear across the following concentration ranges: 100-2500 ng/mL for both SC and tape-stripped skin and 20-800 ng/mL for receptor solution. Intra-day and inter-day accuracy and precision values were lower than 20% at the limit of quantitation. The recovery values ranged from 80 to 100%. The method is adequate to assay imiquimod from skin samples, enabling the determination of the cutaneous penetration profile of uniquimod by in vitro studies. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study evaluated the potential of a w/o microemulsion as a topical carrier system for delivery of the antioxidant quercetin. Topical and transdermal delivery of quercetin were evaluated in vitro Using porcine car skin mounted on a Franz diffusion cell and in vivo on hairless-skin mice. Skin irritation by topical application of the microemulsion containing quercetin, and the protective effect of the formulation on UVB-induced decrease of endogenous reduced glutathione levels and increase of cutaneous proteinase secretion/activity were also investigated. The w/o microemulsion increased the penetration of quercetin into the stratum corneum and epidermis plus dermis at 3, 6. 9 and 12 h post-application in vitro and in vivo at 6 h post-application. No transdermal delivery of quercetin Occurred. By evaluating established endpoints of skin irritation (erythema formation, epidermis thickening and infiltration of inflammatory cells), the Study demonstrated that the daily application of the w/o microemulsion for up to 2 days did not cause skin irritation. W/o microemulsion containing quercetin significantly prevented the UVB irradiation-induced GSH depletion and secretion/activity of metalloproteinases. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study was developed a new nano drug delivery system (NDDS) based on association of biodegradable surfactants with biocompatible magnetic fluid of maguemita citrate derivative. This formulation consists in a magnetic emulsion with nanostructured colloidal particles. Preliminary in vitro experiments showed that the formulation presents a great potential for synergic application in the topical release of photosensitizer drug (PS) and excellent target tissue properties in the photodynamic therapy (PDT) combined with hyperthermia (HPT) protocols. The physical chemistry characterization and in vitro assays were carried out by Zn(II) Phtalocyanine (ZnPc) photosensitizer incorporated into NDDS in the absence and the presence of magnetic fluid, showed good results and high biocompatibility. In vitro experiments were accomplished by tape-stripping protocols for quanti. cation of drug association with different skin tissue layers. This technique is a classical method for analyses of drug release in stratum corneum and epidermis+ dermis skin layers. The NDDS formulations were applied directly in pig skin (tissue model) fixed in the cell`s Franz device with receptor medium container with a PBS/EtOH 20% solution (10mM, pH 7.4) at 37 degrees C. After 12 h of topical administration stratum corneum was removed from fifty tapes and the ZnPc retained was evaluated by solvent extraction in dimetil-sulphoxide under ultrasonic bath. These results indicated that magnetic nanoemulsion (MNE) increase the drug release on the deeper skin layers when compared with classical formulation in the absence of magnetic particles. This could be related with the increase of biocompatibility of NDDS due to the great affinity for the polar extracelullar matrix in the skin and also for the increase in the drug partition inside of corneocites wall. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein transduction domains (PTDs) were recently demonstrated to increase the penetration of the model peptide P20 when the PTD and P20 were covalently attached. Here, we evaluated whether non-covalently linked PTDs were capable of increasing the skin penetration of P20. Two different PTDs were studied: YARA and WLR. Porcine ear skin mounted in a Franz diffusion cell was used to assess the penetration of P20 in the stratum corneum (SC) and viable skin (VS); VS consists of dermis and epidermis without SC. The transdermal delivery of P20 was also assessed. At 1 mM, YARA promoted a 2.33-fold increase in the retention of P20 in the SC but did not significantly increase the amount of P20 that reached VS. WLR significantly increased (2.88-fold) the penetration of P20 in VS. Compared to the non-attached form, the covalently linked WLR fragment was two times more effective in promoting the penetration of P20 into VS. None of the PTDs promoted transdermal delivery of P20 at 4 h post-application. It was concluded that selected non-covalently linked PTDs can be used as a penetration enhancer, but greater skin penetration efficiency can be achieved by covalently binding the PTD to the therapeutic agent. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we evaluated the photophysical and in vitro properties of Foscan (R), a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan (R) and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al.,(30) based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan (R)/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan (R) diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan (R) in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meso-tetra-(N-methylpiridinium-4-yl)-porphyrin (TMPyP) and meso-tetra-(4-sulfonatophenyl)-porphyrin (TPPS(4)) are photosensitizing drugs (PS) used in photodynamic therapy (PDT). Based on the fact that these compounds present similar chemical structures but opposite charges at pH levels near physiological conditions, this work aims to evaluate the in vitro and in vivo influence of these electrical charges on the iontophoretic delivery of TMPyP and TPPS4, attempting to achieve maximum accumulation of PS in skin tissue. The iontophoretic transport of these drugs from a hydrophilic gel was investigated in vitro using porcine ear skin and vertical, flow-through diffusion cells. In vivo experiments using rats were also carried out, and the penetration of the PSs was analyzed by fluorescence microscopy to visualize the manner of how these compounds were distributed in the skin after a short period of iontophoresis application. In vitro, both passive and iontophoretic delivery of the positively charged TMPyP were much greater (20-fold and 67-fold, respectively) than those of the negatively charged TPPS(4). TPPS(4) iontophoresis in vivo increased the fluorescence of the skin only in the very superficial layers. On the other hand, iontophoresis of the positively charged drug expressively increased the rat epidermis and dermis fluorescence, indicating high amounts of this drug throughout the skin layers. Moreover, TMPyP was homogeneously distributed around and into the nuclei of the skin cells, suggesting its potential use in topical PDT. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skin is a large and accessible area of the body, offering the possibility to be used as an alternative route for drug delivery. In the last few years strong progress has been made on the developing of nanoparticulate systems for specific applications. The interaction of such small particles with human skin and their possible penetration attracted some interest from toxicological as well as from drug delivery perspectives. As size is assumed to play a key role, the aim of the present work was to investigate the penetration profile of very small model particles (similar to 4 nm) into excised human skin under conditions chosen to mimic the in vivo situation. Possible application procedures such as massaging the formulation (5 to 10 minutes) were analyzed by non-invasive multiphoton- and confocal laser scanning microscopy (MPM, CLSM). Furthermore, the application on damaged skin was taken into account by deliberately removing parts of the stratum corneum. Although it was clearly observed that the mechanical actions affected the distribution pattern of the QDs on the skin surface, there was no evidence of penetration into the skin in all cases tested. QDs could be found in deeper layers only after massaging of damaged skin for 10 min. Taking these data into account, obtained on the gold standard human skin, the potential applications of nanoparticulate systems to act as carrier delivering drugs into intact skin might be limited and are only of interest for partly damaged skin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topical delivery of lycopene is a convenient way to supplement cutaneous levels of antioxidants. In this study, lycopene was incorporated (0.05%, w/w) in two microemulsions containing BRIJ-propylene glycol (2:1, w/w, surfactant blend) but different oil phases: mono/diglycerides of capric and caprylic acids (MG) or triglycerides of the same fatty acids (TG). Microemulsions containing MG and TG were isotropic, fluid, and clear, with internal phase diameters of 27 and 52 nm, respectively. Both MG- or TG-containing microemulsions markedly increased lycopene penetration in the stratum corneum, (6- and 3.6-fold, respectively) and in viable layers of porcine ear skin 2 (from undetected to 172.6 +/- 41.1 and 103.1 +/- 7.2 ng/cm(2), respectively) compared to a control solution. To assure that lycopene delivered to the skin was active, the antioxidant activity of skin treated with MG-containing microemulsion was determined by CUPRAC assay, and found to be 10-fold higher than untreated skin. The cytotoxicity of MG-containing microemulsion in cultured fibroblasts was similar to propylene glycol (considered safe) and significantly less than of sodium lauryl sulfate (a moderate-to-severe irritant) at 1-50 mu g/mL. These results demonstrate that the MG-containing microemulsion is an efficient and safe system to increase lycopene delivery to the skin and the antioxidant activity in the tissue. (C) 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:1346-1357, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dimethylaminoethanol (DMAE) has been used in anti-aging formulations but few scientifically based data address its efficacy. The aim of this study was to evaluate the effects of DMAE-based formulations on hairless mice and human skin. Formulations containing with or without DMAE were applied to the dorsum of hairless mice. Histopathological and histometric evaluations were carried out after seven days. Formulations were also applied to the ventral forearm and the lateral periocular area of human volunteers. Stratum corneum water content and skin mechanical properties were analyzed using Corneometer and Cutometer, before and after a single and repeated application. Histometric evaluations showed that formulations with or without DMAE increased the viable epidermis thickness, but only the DMAE-supplemented formulation led to increased dermal thickness. DMAE also induced increase in collagen fiber thickness, which was observed in the histopathological study. After the single and the 8-week period application on human skin, formulations with and without DMAE enhanced the stratum corneum water content in the forearm skin. Mechanical properties were not significantly modified. So, we can suggest that DMAE action is related to its effects on the dermis as observed in the histopathological and histometric studies and showed hydration effects on skin.