940 resultados para rule-based
Resumo:
The progressing cavity pump artificial lift system, PCP, is a main lift system used in oil production industry. As this artificial lift application grows the knowledge of it s dynamics behavior, the application of automatic control and the developing of equipment selection design specialist systems are more useful. This work presents tools for dynamic analysis, control technics and a specialist system for selecting lift equipments for this artificial lift technology. The PCP artificial lift system consists of a progressing cavity pump installed downhole in the production tubing edge. The pump consists of two parts, a stator and a rotor, and is set in motion by the rotation of the rotor transmitted through a rod string installed in the tubing. The surface equipment generates and transmits the rotation to the rod string. First, is presented the developing of a complete mathematical dynamic model of PCP system. This model is simplified for use in several conditions, including steady state for sizing PCP equipments, like pump, rod string and drive head. This model is used to implement a computer simulator able to help in system analysis and to operates as a well with a controller and allows testing and developing of control algorithms. The next developing applies control technics to PCP system to optimize pumping velocity to achieve productivity and durability of downhole components. The mathematical model is linearized to apply conventional control technics including observability and controllability of the system and develop design rules for PI controller. Stability conditions are stated for operation point of the system. A fuzzy rule-based control system are developed from a PI controller using a inference machine based on Mandami operators. The fuzzy logic is applied to develop a specialist system that selects PCP equipments too. The developed technics to simulate and the linearized model was used in an actual well where a control system is installed. This control system consists of a pump intake pressure sensor, an industrial controller and a variable speed drive. The PI control was applied and fuzzy controller was applied to optimize simulated and actual well operation and the results was compared. The simulated and actual open loop response was compared to validate simulation. A case study was accomplished to validate equipment selection specialist system
Resumo:
Operating industrial processes is becoming more complex each day, and one of the factors that contribute to this growth in complexity is the integration of new technologies and smart solutions employed in the industry, such as the decision support systems. In this regard, this dissertation aims to develop a decision support system based on an computational tool called expert system. The main goal is to turn operation more reliable and secure while maximizing the amount of relevant information to each situation by using an expert system based on rules designed for a particular area of expertise. For the modeling of such rules has been proposed a high-level environment, which allows the creation and manipulation of rules in an easier way through visual programming. Despite its wide range of possible applications, this dissertation focuses only in the context of real-time filtering of alarms during the operation, properly validated in a case study based on a real scenario occurred in an industrial plant of an oil and gas refinery
Resumo:
The purpose of this paper was to evaluate attributes derived from fully polarimetric PALSAR data to discriminate and map macrophyte species in the Amazon floodplain wetlands. Fieldwork was carried out almost simultaneously to the radar acquisition, and macrophyte biomass and morphological variables were measured in the field. Attributes were calculated from the covariance matrix [C] derived from the single-look complex data. Image attributes and macrophyte variables were compared and analyzed to investigate the sensitivity of the attributes for discriminating among species. Based on these analyses, a rule-based classification was applied to map macrophyte species. Other classification approaches were tested and compared to the rule-based method: a classification based on the Freeman-Durden and Cloude-Pottier decomposition models, a hybrid classification (Wishart classifier with the input classes based on the H/a plane), and a statistical-based classification (supervised classification using Wishart distance measures). The findings show that attributes derived from fully polarimetric L-band data have good potential for discriminating herbaceous plant species based on morphology and that estimation of plant biomass and productivity could be improved by using these polarimetric attributes.
Resumo:
In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison
Resumo:
This paper presents an approach to integrate an artificial intelligence (AI) technique, concretely rule-based processing, into mobile agents. In particular, it focuses on the aspects of designing and implementing an appropriate inference engine of small size to reduce migration costs. The main goal is combine two lines of agent research, First, the engineering oriented approach on mobile agent architectures, and, second, the AI related approach on inference engines driven by rules expressed in a restricted subset of first-order predicate logic (FOPL). In addition to size reduction, the main functions of this type of engine were isolated, generalized and implemented as dynamic components, making possible not only their migration with the agent, but also their dynamic migration and loading on demand. A set of classes for representing and exchanging knowledge between rule-based systems was also proposed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A etiquetagem morfossintática é uma tarefa básica requerida por muitas aplicações de processamento de linguagem natural, tais como análise gramatical e tradução automática, e por aplicações de processamento de fala, por exemplo, síntese de fala. Essa tarefa consiste em etiquetar palavras em uma sentença com as suas categorias gramaticais. Apesar dessas aplicações requererem etiquetadores que demandem maior precisão, os etiquetadores do estado da arte ainda alcançam acurácia de 96 a 97%. Nesta tese, são investigados recursos de corpus e de software para o desenvolvimento de um etiquetador com acurácia superior à do estado da arte para o português brasileiro. Centrada em uma solução híbrida que combina etiquetagem probabilística com etiquetagem baseada em regras, a proposta de tese se concentra em um estudo exploratório sobre o método de etiquetagem, o tamanho, a qualidade, o conjunto de etiquetas e o gênero dos corpora de treinamento e teste, além de avaliar a desambiguização de palavras novas ou desconhecidas presentes nos textos a serem etiquetados. Quatro corpora foram usados nos experimentos: CETENFolha, Bosque CF 7.4, Mac-Morpho e Selva Científica. O modelo de etiquetagem proposto partiu do uso do método de aprendizado baseado em transformação(TBL) ao qual foram adicionadas três estratégias, combinadas em uma arquitetura que integra as saídas (textos etiquetados) de duas ferramentas de uso livre, o TreeTagger e o -TBL, com os módulos adicionados ao modelo. No modelo de etiquetador treinado com o corpus Mac-Morpho, de gênero jornalístico, foram obtidas taxas de acurácia de 98,05% na etiquetagem de textos do Mac-Morpho e 98,27% em textos do Bosque CF 7.4, ambos de gênero jornalístico. Avaliou-se também o desempenho do modelo de etiquetador híbrido proposto na etiquetagem de textos do corpus Selva Científica, de gênero científico. Foram identificadas necessidades de ajustes no etiquetador e nos corpora e, como resultado, foram alcançadas taxas de acurácia de 98,07% no Selva Científica, 98,06% no conjunto de teste do Mac-Morpho e 98,30% em textos do Bosque CF 7.4. Esses resultados são significativos, pois as taxas de acurácia alcançadas são superiores às do estado da arte, validando o modelo proposto em busca de um etiquetador morfossintático mais confiável.
Resumo:
We consider some of the relations that exist between real Szegö polynomials and certain para-orthogonal polynomials defined on the unit circle, which are again related to certain orthogonal polynomials on [-1, 1] through the transformation x = (z1/2+z1/2)/2. Using these relations we study the interpolatory quadrature rule based on the zeros of polynomials which are linear combinations of the orthogonal polynomials on [-1, 1]. In the case of any symmetric quadrature rule on [-1, 1], its associated quadrature rule on the unit circle is also given.
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba
Resumo:
OBJECTIVE: This study proposes a new approach that considers uncertainty in predicting and quantifying the presence and severity of diabetic peripheral neuropathy. METHODS: A rule-based fuzzy expert system was designed by four experts in diabetic neuropathy. The model variables were used to classify neuropathy in diabetic patients, defining it as mild, moderate, or severe. System performance was evaluated by means of the Kappa agreement measure, comparing the results of the model with those generated by the experts in an assessment of 50 patients. Accuracy was evaluated by an ROC curve analysis obtained based on 50 other cases; the results of those clinical assessments were considered to be the gold standard. RESULTS: According to the Kappa analysis, the model was in moderate agreement with expert opinions. The ROC analysis (evaluation of accuracy) determined an area under the curve equal to 0.91, demonstrating very good consistency in classifying patients with diabetic neuropathy. CONCLUSION: The model efficiently classified diabetic patients with different degrees of neuropathy severity. In addition, the model provides a way to quantify diabetic neuropathy severity and allows a more accurate patient condition assessment.
Resumo:
I sistemi di raccomandazione per come li conosciamo nascono alla fine del XX secolo, e si sono evoluti fino ai giorni nostri approcciandosi a numerosi campi, tra i quali analizzeremo l’ingegneria del software, la medicina, la gestione delle reti aziendali e infine, come argomento focale della tesi, l’e-Learning. Dopo una rapida panoramica sullo stato dell’arte dei sistemi di raccomandazione al giorno d’oggi, discorrendo velocemente tra metodi puri e metodi ibridi ottenuti come combinazione dei primi, analizzeremo varie applicazioni pratiche per dare un’idea al lettore di quanto possano essere vari i settori di utilizzo di questi software. Tratteremo nello specifico il funzionamento di varie tecniche per la raccomandazione in ambito e-Learning, analizzando tutte le problematiche che distinguono questo settore da tutti gli altri. Nello specifico, dedicheremo un’intera sezione alla descrizione della psicologia dello studente, e su come capire il suo profilo cognitivo aiuti a suggerire al meglio la giusta risorsa da apprendere nel modo più corretto. È doveroso, infine, parlare di privacy: come vedremo nel primo capitolo, i sistemi di raccomandazione utilizzano al massimo dati sensibili degli utenti al fine di fornire un suggerimento il più accurato possibile. Ma come possiamo tutelarli contro intrusioni e quindi contro violazioni della privacy? L’obiettivo di questa tesi è quindi quello di presentare al meglio lo stato attuale dei sistemi di raccomandazione in ambito e-Learning e non solo, in modo da costituire un riferimento chiaro, semplice ma completo per chiunque si volesse affacciare a questo straordinario ed affascinante mondo della raccomandazione on line.
Resumo:
In den westlichen Industrieländern ist das Mammakarzinom der häufigste bösartige Tumor der Frau. Sein weltweiter Anteil an allen Krebserkrankungen der Frau beläuft sich auf etwa 21 %. Inzwischen ist jede neunte Frau bedroht, während ihres Lebens an Brustkrebs zu erkranken. Die alterstandardisierte Mortalitätrate liegt derzeit bei knapp 27 %.rnrnDas Mammakarzinom hat eine relative geringe Wachstumsrate. Die Existenz eines diagnostischen Verfahrens, mit dem alle Mammakarzinome unter 10 mm Durchmesser erkannt und entfernt werden, würden den Tod durch Brustkrebs praktisch beseitigen. Denn die 20-Jahres-Überlebungsrate bei Erkrankung durch initiale Karzinome der Größe 5 bis 10 mm liegt mit über 95 % sehr hoch.rnrnMit der Kontrastmittel gestützten Bildgebung durch die MRT steht eine relativ junge Untersuchungsmethode zur Verfügung, die sensitiv genug zur Erkennung von Karzinomen ab einer Größe von 3 mm Durchmesser ist. Die diagnostische Methodik ist jedoch komplex, fehleranfällig, erfordert eine lange Einarbeitungszeit und somit viel Erfahrung des Radiologen.rnrnEine Computer unterstützte Diagnosesoftware kann die Qualität einer solch komplexen Diagnose erhöhen oder zumindest den Prozess beschleunigen. Das Ziel dieser Arbeit ist die Entwicklung einer vollautomatischen Diagnose Software, die als Zweitmeinungssystem eingesetzt werden kann. Meines Wissens existiert eine solche komplette Software bis heute nicht.rnrnDie Software führt eine Kette von verschiedenen Bildverarbeitungsschritten aus, die dem Vorgehen des Radiologen nachgeahmt wurden. Als Ergebnis wird eine selbstständige Diagnose für jede gefundene Läsion erstellt: Zuerst eleminiert eine 3d Bildregistrierung Bewegungsartefakte als Vorverarbeitungsschritt, um die Bildqualität der nachfolgenden Verarbeitungsschritte zu verbessern. Jedes kontrastanreichernde Objekt wird durch eine regelbasierte Segmentierung mit adaptiven Schwellwerten detektiert. Durch die Berechnung kinetischer und morphologischer Merkmale werden die Eigenschaften der Kontrastmittelaufnahme, Form-, Rand- und Textureeigenschaften für jedes Objekt beschrieben. Abschließend werden basierend auf den erhobenen Featurevektor durch zwei trainierte neuronale Netze jedes Objekt in zusätzliche Funde oder in gut- oder bösartige Läsionen klassifiziert.rnrnDie Leistungsfähigkeit der Software wurde auf Bilddaten von 101 weiblichen Patientinnen getested, die 141 histologisch gesicherte Läsionen enthielten. Die Vorhersage der Gesundheit dieser Läsionen ergab eine Sensitivität von 88 % bei einer Spezifität von 72 %. Diese Werte sind den in der Literatur bekannten Vorhersagen von Expertenradiologen ähnlich. Die Vorhersagen enthielten durchschnittlich 2,5 zusätzliche bösartige Funde pro Patientin, die sich als falsch klassifizierte Artefakte herausstellten.rn
Resumo:
In questo lavoro si introducono i concetti di base di Natural Language Processing, soffermandosi su Information Extraction e analizzandone gli ambiti applicativi, le attività principali e la differenza rispetto a Information Retrieval. Successivamente si analizza il processo di Named Entity Recognition, focalizzando l’attenzione sulle principali problematiche di annotazione di testi e sui metodi per la valutazione della qualità dell’estrazione di entità. Infine si fornisce una panoramica della piattaforma software open-source di language processing GATE/ANNIE, descrivendone l’architettura e i suoi componenti principali, con approfondimenti sugli strumenti che GATE offre per l'approccio rule-based a Named Entity Recognition.
Resumo:
Visual imagery – similar to visual perception – activates feature-specific and category-specific visual areas. This is frequently observed in experiments where the instruction is to imagine stimuli that have been shown immediately before the imagery task. Hence, feature-specific activation could be related to the short-term memory retrieval of previously presented sensory information. Here, we investigated mental imagery of stimuli that subjects had not seen before, eliminating the effects of short-term memory. We recorded brain activation using fMRI while subjects performed a behaviourally controlled guided imagery task in predefined retinotopic coordinates to optimize sensitivity in early visual areas. Whole brain analyses revealed activation in a parieto-frontal network and lateral–occipital cortex. Region of interest (ROI) based analyses showed activation in left hMT/V5+. Granger causality mapping taking left hMT/V5+ as source revealed an imagery-specific directed influence from the left inferior parietal lobule (IPL). Interestingly, we observed a negative BOLD response in V1–3 during imagery, modulated by the retinotopic location of the imagined motion trace. Our results indicate that rule-based motion imagery can activate higher-order visual areas involved in motion perception, with a role for top-down directed influences originating in IPL. Lower-order visual areas (V1, V2 and V3) were down-regulated during this type of imagery, possibly reflecting inhibition to avoid visual input from interfering with the imagery construction. This suggests that the activation in early visual areas observed in previous studies might be related to short- or long-term memory retrieval of specific sensory experiences.
Resumo:
Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20\% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.