884 resultados para reduced gravity
Resumo:
Piezoelectric energy harvesters can be used to convert ambient energy into electrical energy and power small autonomous devices. In recent years, massive effort has been made to improve the energy harvesting ability in piezoelectric materials. In this study, reduced graphene oxide was added into poly(vinylidene fluoride) to fabricate the piezoelectric nanocomposite films. Open-circuit voltage and electrical power harvesting experiments showed remarkable enhancement in the piezoelectricity of the fabricated poly(vinylidene fluoride)/reduced graphene oxide nanocomposite, especially at an optimal reduced graphene oxide content of 0.05 wt%. Compared to pristine poly(vinylidene fluoride) films, the open-circuit voltage, the density of harvested power of alternating current, and direct current of the poly(vinylidene fluoride)/reduced graphene oxide nanocomposite films increased by 105%, 153%, and 233%, respectively, indicating a great potential for a broad range of applications.
Resumo:
Amplification of the Plasmodium falciparum multidrug resistance 1 gene (pfmdr1) has been implicated in multidrug resistance, including in vitro resistance to artelinic acid (AL). The stability and fitness of having multiple copies of pfmdr1 are important factors due to their potential effects on the resistance phenotype of parasites. These factors were investigated by using an AL-resistant line of P. falciparum (W2AL80) and clones originating from W2AL80. A rapid reduction in pfmdr1 copy number (CN) was observed in the uncloned W2AL80 line; 63% of this population reverted to a CN of <3 without exposure to the drug. Deamplification of the pfmdr1 amplicon was then determined in three clones, each initially containing three copies of pfmdr1. Interestingly, two outcomes were observed during 3 months without drug pressure. In one clone, parasites with fewer than 3 copies of pfmdr1 emerged rapidly. In two other clones, the reversion was significantly delayed. In all subclones, the reduction in pfmdr1 CN involved the deamplification of the entire amplicon (19 genes). Importantly, deamplification of the pfmdr1 amplicon resulted in partial reversal of resistance to AL and increased susceptibility to mefloquine. These results demonstrate that multiple copies of the pfmdr1-containing amplicon in AL-resistant parasites are unstable when drug pressure is withdrawn and have practical implications for the maintenance and spread of parasites resistant to artemisinin derivatives.
Resumo:
The myofibrillar protein synthesis (MPS) response to resistance exercise (REX) and protein ingestion during energy deficit (ED) is unknown. We determined, in young men (n=8) and women (n=7), protein signaling, resting post-absorptive MPS during energy balance [EB: 45 kcal∙(kg FFM∙d)-1] and after 5d of ED [30 kcal∙(kg FFM∙d)-1] as well as MPS while in ED after acute REX in the fasted state and with the ingestion of whey protein (15 and 30 g). Post-absorptive rates of MPS were 27% lower in ED than EB (P<0.001), but REX stimulated MPS to rates equal to EB. Ingestion of 15 and 30 g of protein after REX in ED increased MPS ~16 and ~34% above resting EB, (P<0.02). p70 S6Kthr389 phosphorylation increased above EB only with combined exercise and protein intake (~2-7 fold; P<0.05). In conclusion, short-term ED reduces post-absorptive MPS, however, a bout of REX in ED restores MPS to values observed at rest in EB. The ingestion of protein after REX further increases MPS above resting EB in a dose-dependent manner. We conclude that combining REX with increased protein availability after exercise enhances rates of skeletal muscle protein synthesis during short term ED and could, in the long term, preserve muscle mass.
Resumo:
In this paper we propose and study low complexity algorithms for on-line estimation of hidden Markov model (HMM) parameters. The estimates approach the true model parameters as the measurement noise approaches zero, but otherwise give improved estimates, albeit with bias. On a nite data set in the high noise case, the bias may not be signi cantly more severe than for a higher complexity asymptotically optimal scheme. Our algorithms require O(N3) calculations per time instant, where N is the number of states. Previous algorithms based on earlier hidden Markov model signal processing methods, including the expectation-maximumisation (EM) algorithm require O(N4) calculations per time instant.
Resumo:
Impaired driver alertness increases the likelihood of drivers’ making mistakes and reacting too late to unexpected events while driving. This is particularly a concern on monotonous roads, where a driver’s attention can decrease rapidly. While effective countermeasures do not currently exist, the development of in-vehicle sensors opens avenues for monitoring driving behavior in real-time. The aim of this study is to predict drivers’ level of alertness through surrogate measures collected from in-vehicle sensors. Electroencephalographic activity is used as a reference to evaluate alertness. Based on a sample of 25 drivers, data was collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device. Various classification models were tested from linear regressions to Bayesians and data mining techniques. Results indicated that Neural Networks were the most efficient model in detecting lapses in alertness. Findings also show that reduced alertness can be predicted up to 5 minutes in advance with 90% accuracy, using surrogate measures such as time to line crossing, blink frequency and skin conductance level. Such a method could be used to warn drivers of their alertness level through the development of an in-vehicle device monitoring, in real-time, drivers' behavior on highways.
Resumo:
Impairments in social cognitive functioning are well documented in schizophrenia, however the neural basis of these deficits is unclear. A recent explanatory model of social cognition centers upon the activity of mirror neurons, which are cortical brain cells that become active during both the performance and observation of behavior. Here, we test for the first time whether mirror neuron functioning is reduced in schizophrenia. Fifteen individuals with schizophrenia or schizoaffective disorder and fifteen healthy controls completed a transcranial magnetic stimulation (TMS) experiment designed to assess mirror neuron activation. While patients demonstrated no abnormalities in cortical excitability, motor facilitation during action observation, putatively reflecting mirror neuron activity, was reduced in schizophrenia. Dysfunction within the mirror neuron system may contribute to the pathophysiology of schizophrenia.
Resumo:
Large-scale integration of non-inertial generators such as wind farms will create frequency stability issues due to reduced system inertia. Inertia based frequency stability study is important to predict the performance of power system with increased level of renewables. This paper focuses on the impact large-scale wind penetration on frequency stability of the Australian Power Network. MATLAB simulink is used to develop a frequency based dynamic model utilizing the network data from a simplified 14-generator Australian power system. The loss of generation is modeled as the active power disturbance and minimum inertia required to maintain the frequency stability is determined for five-area power system.
Resumo:
Aim Retinal tissue integrity in relation to diabetic neuropathy is not known. The aim of this study was to investigate retinal tissue thickness in relation to diabetic peripheral neuropathy (DPN) with and without diabetic retinopathy (DR). Methods Full retinal thickness at the parafoveal and perifoveal macula and neuro-retinal thickness around the optic nerve head (ONH) and at the macula was examined using spectral domain optical coherence tomography. The eye on the hand-dominant side of 85 individuals with type 1 diabetes and 66 individuals with type 2 diabetes, with or without DR and DPN, were compared to the eyes (n=45) of age-matched non-diabetic controls. Diabetic neuropathy was defined as Neuropathy Disability Score (NDS) ≥3 on a scale of 0-10. A general linear model was used to examine the relationship between diabetic neuropathy and foveal, parafoveal and perifoveal retinal thickness and neuro-retinal thickness, in relation to DR status, age, gender, HbA1c levels and duration of diabetes. A p-value of <0.05 was considered statistically significant. Results Perifoveal retinal thickness is reduced with increasing severity of neuropathy, especially in the inferior hemisphere (p=0.004); this effect was not related to age (p=0.088). For every unit increase in NDS score, the inferior perifoveal retinal thickness reduced by 1.64 μm. Neuro-retinal thickness around the ONH decreased with increasing severity of neuropathy (p<0.014 for average and hemisphere thicknesses); for every unit increase in NDS, neuro-retinal thickness around the ONH reduced by 1.23 μm. Retinal thickness in the parafovea was increased in the absence of DR (p<0.017 for average and hemisphere thicknesses). Neuro-retinal thickness at the macula was inversely related to age alone (p<0.001). All retinal parameters, except the inferior perifovea, reduced with advancing age (p<0.007 for all). Conclusions Diabetic neuropathy is associated with changes in full retinal thickness and neuro-retinal layers. This may represent a second threat to vision integrity, in addition to the better-characterised retinopathy. This study provides new knowledge about the anatomical aspects of the retinal tissue in relation to neuropathy and retinopathy.
Resumo:
Objectives To evaluate relationships between self-reported physical activity, proportions of long-chain omega-3 polyunsaturated fatty acids (LCn3) in erythrocyte content (percentage of total fatty acids) and risk of mild cognitive impairment (MCI) in older adults. Method A cross-sectional study was conducted. Community-dwelling male and female (n = 84) participants over the age of 65 years with and without MCI were tested for erythrocyte proportions of the LCn3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Physical activity was measured using a validated questionnaire. Results The interaction between erythrocyte EPA, but not DHA, and increased physical activity was associated with increased odds of a non-MCI classification. Conclusion An interaction between physical activity and erythrocyte EPA content (percentage of fatty acids) significantly predicted MCI status in older adults. Randomised control trials are needed to examine the potential for supplementation with EPA in combination with increased physical activity to mitigate the risk of MCI in ageing adults.
Resumo:
Tunable charge-trapping behaviors including unipolar charge trapping of one type of charge carrier and ambipolar trapping of both electrons and holes in a complementary manner is highly desirable for low power consumption multibit flash memory design. Here, we adopt a strategy of tuning the Fermi level of reduced graphene oxide (rGO) through self-assembled monolayer (SAM) functionalization and form p-type and n-type doped rGO with a wide range of manipulation on work function. The functionalized rGO can act as charge-trapping layer in ambipolar flash memories, and a dramatic transition of charging behavior from unipolar trapping of electrons to ambipolar trapping and eventually to unipolar trapping of holes was achieved. Adjustable hole/electron injection barriers induce controllable Vth shift in the memory transistor after programming operation. Finally, we transfer the ambipolar memory on flexible substrates and study their charge-trapping properties at various bending cycles. The SAM-functionalized rGO can be a promising candidate for next-generation nonvolatile memories.
Resumo:
In this paper we attack round-reduced Keccak hash function with a technique called rotational cryptanalysis. We focus on Keccak variants proposed as SHA-3 candidates in the NIST’s contest for a new standard of cryptographic hash function. Our main result is a preimage attack on 4-round Keccak and a 5-round distinguisher on Keccak-f[1600] permutation — the main building block of Keccak hash function.
Resumo:
Background Preparative myeloablative conditioning regimens for allogeneic hematopoietic stem-cell transplantation (HSCT) may control malignancy and facilitate engraftment but also contribute to transplant related mortality, cytokine release, and acute graft-versus-host disease (GVHD). Reduced intensity conditioning (RIC) regimens have decreased transplant related mortality but the incidence of acute GVHD, while delayed, remains unchanged. There are currently no in vivo allogeneic models of RIC HSCT, limiting studies into the mechanism behind RIC-associated GVHD. Methods We developed two RIC HSCT models that result in delayed onset GVHD (major histocompatibility complex mismatched (UBI-GFP/BL6 [H-2b]→BALB/c [H-2d]) and major histocompatibility complex matched, minor histocompatibility mismatched (UBI-GFP/BL6 [H-2b]→BALB.B [H-2b])) enabling the effect of RIC on chimerism, dendritic cell (DC) chimerism, and GVHD to be investigated. Results In contrast with myeloablative conditioning, we observed that RIC-associated delayed-onset GVHD is characterized by low production of tumor necrosis factor-α, maintenance of host DC, phenotypic DC activation, increased T-regulatory cell numbers, and a delayed emergence of activated donor DC. Furthermore, changes to the peritransplant milieu in the recipient after RIC lead to the altered activation of DC and the induction of T-regulatory responses. Reduced intensity conditioning recipients suffer less early damage to GVHD target organs. However, as donor cells engraft, activated donor DC and rising levels of tumor necrosis factor-α are associated with a later onset of severe GVHD. Conclusions Delineating the mechanisms underlying delayed onset GVHD in RIC HSCT recipients is vital to improve the prediction of disease onset and allow more targeted interventions for acute GVHD.
Resumo:
This paper aims to develop a more nuanced analytic vocabulary to typify how and where classroom trouble can manifest in pedagogic discourse. It draws on classroom ethnographies conducted in non-academic secondary school pathways and alternative programs in Australian communities with high youth unemployment, where the policy of ‘earning or learning’ till age 17 has effectively extended compulsory schooling. Three concepts are developed and exemplified: ‘regulative flares’, being moments when teachers resort to explicitly reasserting the lesson’s social order; ‘moral gravity’ to describe the degree to which the moral order underpinning the regulative discourse is tied to the immediate context or beyond; and ‘instructional elasticity’ to account for trouble originating in the instructional register.