966 resultados para quantifying


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Critical loads are the basis for policies controlling emissions of acidic substances in Europe. The implementation of these policies involves large expenditures, and it is reasonable for policymakers to ask what degree of certainty can be attached to the underlying critical load and exceedance estimates. This paper is a literature review of studies which attempt to estimate the uncertainty attached to critical loads. Critical load models and uncertainty analysis are briefly outlined. Most studies have used Monte Carlo analysis of some form to investigate the propagation of uncertainties in the definition of the input parameters through to uncertainties in critical loads. Though the input parameters are often poorly known, the critical load uncertainties are typically surprisingly small because of a "compensation of errors" mechanism. These results depend on the quality of the uncertainty estimates of the input parameters, and a "pedigree" classification for these is proposed. Sensitivity analysis shows that some input parameters are more important in influencing critical load uncertainty than others, but there have not been enough studies to form a general picture. Methods used for dealing with spatial variation are briefly discussed. Application of alternative models to the same site or modifications of existing models can lead to widely differing critical loads, indicating that research into the underlying science needs to continue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports an uncertainty analysis of critical loads for acid deposition for a site in southern England, using the Steady State Mass Balance Model. The uncertainty bounds, distribution type and correlation structure for each of the 18 input parameters was considered explicitly, and overall uncertainty estimated by Monte Carlo methods. Estimates of deposition uncertainty were made from measured data and an atmospheric dispersion model, and hence the uncertainty in exceedance could also be calculated. The uncertainties of the calculated critical loads were generally much lower than those of the input parameters due to a "compensation of errors" mechanism - coefficients of variation ranged from 13% for CLmaxN to 37% for CL(A). With 1990 deposition, the probability that the critical load was exceeded was > 0.99; to reduce this probability to 0.50, a 63% reduction in deposition is required; to 0.05, an 82% reduction. With 1997 deposition, which was lower than that in 1990, exceedance probabilities declined and uncertainties in exceedance narrowed as deposition uncertainty had less effect. The parameters contributing most to the uncertainty in critical loads were weathering rates, base cation uptake rates, and choice of critical chemical value, indicating possible research priorities. However, the different critical load parameters were to some extent sensitive to different input parameters. The application of such probabilistic results to environmental regulation is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, and thus compares their magnitudes. The carbon cycle gives rise to two climate feedback terms: the concentration–carbon feedback, resulting from the uptake of carbon by land and ocean as a biogeochemical response to the atmospheric CO2 concentration, and the climate–carbon feedback, resulting from the effect of climate change on carbon fluxes. In the earth system models of the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP), climate–carbon feedback on warming is positive and of a similar size to the cloud feedback. The concentration–carbon feedback is negative; it has generally received less attention in the literature, but in magnitude it is 4 times larger than the climate–carbon feedback and more uncertain. The concentration–carbon feedback is the dominant uncertainty in the allowable CO2 emissions that are consistent with a given CO2 concentration scenario. In modeling the climate response to a scenario of CO2 emissions, the net carbon cycle feedback is of comparable size and uncertainty to the noncarbon–climate response. To quantify simulated carbon cycle feedbacks satisfactorily, a radiatively coupled experiment is needed, in addition to the fully coupled and biogeochemically coupled experiments, which are referred to as coupled and uncoupled in C4MIP. The concentration–carbon and climate–carbon feedbacks do not combine linearly, and the concentration–carbon feedback is dependent on scenario and time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A powerful way to test the realism of ocean general circulation models is to systematically compare observations of passive tracer concentration with model predictions. The general circulation models used in this way cannot resolve a full range of vigorous mesoscale activity (on length scales between 10–100 km). In the real ocean, however, this activity causes important variability in tracer fields. Thus, in order to rationally compare tracer observations with model predictions these unresolved fluctuations (the model variability error) must be estimated. We have analyzed this variability using an eddy‐resolving reduced‐gravity model in a simple midlatitude double‐gyre configuration. We find that the wave number spectrum of tracer variance is only weakly sensitive to the distribution of (large scale slowly varying) tracer sources and sinks. This suggests that a universal passive tracer spectrum may exist in the ocean. We estimate the spectral shape using high‐resolution measurements of potential temperature on an isopycnal in the upper northeast Atlantic Ocean, finding a slope near k −1.7 between 10 and 500 km. The typical magnitude of the variance is estimated by comparing tracer simulations using different resolutions. For CFC‐ and tritium‐type transient tracers the peak magnitude of the model variability saturation error may reach 0.20 for scales shorter than 100 km. This is of the same order as the time mean saturation itself and well over an order of magnitude greater than the instrumental uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>1. The development of sustainable, multi-functional agricultural systems involves reconciling the needs of agricultural production with the objectives for environmental protection, including biodiversity conservation. However, the definition of sustainability remains ambiguous and it has proven difficult to identify suitable indicators for monitoring progress towards, and the successful achievement of, sustainability. 2. In this study, we show that a trait-based approach can be used to assess the detrimental impacts of agricultural change to a broad range of taxonomic groupings and derive a standardised index of farmland biodiversity health, built around an objective of achieving stable or increasing populations in all species associated with agricultural landscapes. 3. To demonstrate its application, we assess the health of UK farmland biodiversity relative to this goal. Our results suggest that the populations of two-thirds of 333 plant and animal species assessed are unsustainable under current UK agricultural practices. 4. We then explore the potential benefits of an agri-environment scheme, Entry Level Stewardship (ELS), to farmland biodiversity in the UK under differing levels of risk mitigation delivery. We show that ELS has the potential to make a significant contribution to progress towards sustainability targets but that this potential is severely restricted by current patterns of scheme deployment. 5.Synthesis and applications: We have developed a cross-taxonomic sustainability index which can be used to assess both the current health of farmland biodiversity and the impacts of future agricultural changes relative to quantitative biodiversity targets. Although biodiversity conservation is just one of a number of factors that must be considered when defining sustainability, we believe our cross-taxonomic index has the potential to be a valuable tool for guiding the development of sustainable agricultural systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of genetically modified (GM) crops has led the European Union (EU) to put forward the concept of 'coexistence' to give fanners the freedom to plant both conventional and GM varieties. Should a premium for non-GM varieties emerge in the market, 'contamination' by GM pollen would generate a negative externality to conventional growers. It is therefore important to assess the effect of different 'policy variables'on the magnitude of the externality to identify suitable policies to manage coexistence. In this paper, taking GM herbicide tolerant oilseed rape as a model crop, we start from the model developed in Ceddia et al. [Ceddia, M.G., Bartlett, M., Perrings, C., 2007. Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol. Modell. 205, pp. 169-180] use a Monte Carlo experiment to generate data and then estimate the effect of the number of GM and conventional fields, width of buffer areas and the degree of spatial aggregation (i.e. the 'policy variables') on the magnitude of the externality at the landscape level. To represent realistic conditions in agricultural production, we assume that detection of GM material in conventional produce might occur at the field level (no grain mixing occurs) or at the silos level (where grain mixing from different fields in the landscape occurs). In the former case, the magnitude of the externality will depend on the number of conventional fields with average transgenic presence above a certain threshold. In the latter case, the magnitude of the externality will depend on whether the average transgenic presence across all conventional fields exceeds the threshold. In order to quantify the effect of the relevant' policy variables', we compute the marginal effects and the elasticities. Our results show that when relying on marginal effects to assess the impact of the different 'policy variables', spatial aggregation is far more important when transgenic material is detected at field level, corroborating previous research. However, when elasticity is used, the effectiveness of spatial aggregation in reducing the externality is almost identical whether detection occurs at field level or at silos level. Our results show also that the area planted with GM is the most important 'policy variable' in affecting the externality to conventional growers and that buffer areas on conventional fields are more effective than those on GM fields. The implications of the results for the coexistence policies in the EU are discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impacts of climate change on crop productivity are often assessed using simulations from a numerical climate model as an input to a crop simulation model. The precision of these predictions reflects the uncertainty in both models. We examined how uncertainty in a climate (HadAM3) and crop General Large-Area Model (GLAM) for annual crops model affects the mean and standard deviation of crop yield simulations in present and doubled carbon dioxide (CO2) climates by perturbation of parameters in each model. The climate sensitivity parameter (λ, the equilibrium response of global mean surface temperature to doubled CO2) was used to define the control climate. Observed 1966–1989 mean yields of groundnut (Arachis hypogaea L.) in India were simulated well by the crop model using the control climate and climates with values of λ near the control value. The simulations were used to measure the contribution to uncertainty of key crop and climate model parameters. The standard deviation of yield was more affected by perturbation of climate parameters than crop model parameters in both the present-day and doubled CO2 climates. Climate uncertainty was higher in the doubled CO2 climate than in the present-day climate. Crop transpiration efficiency was key to crop model uncertainty in both present-day and doubled CO2 climates. The response of crop development to mean temperature contributed little uncertainty in the present-day simulations but was among the largest contributors under doubled CO2. The ensemble methods used here to quantify physical and biological uncertainty offer a method to improve model estimates of the impacts of climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building refurbishment is key to reducing the carbon footprint and improving comfort in the built environment. However, quantifying the real benefit of a facade change, which can bring advantages to owners (value), occupants (comfort) and the society (sustainability), is not a simple task. At a building physics level, the changes in kWh per m2 of heating / cooling load can be readily quantified. However, there are many subtle layers of operation and mainte-nance below these headline figures which determine how sustainable a building is in reality, such as for example quality of life factors. This paper considers the range of approached taken by a fa/e refurbishment consortium to assess refurbishment solutions for multi-storey, multi-occupancy buildings and how to critically evaluate them. Each of the applued tools spans one or more of the three building parameters of people, product and process. 'De-cision making' analytical network process and parametric building analysis tools are described and their potential impact on the building refurbishment process evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper assesses the ARELIS (Assured Residual Life Span) method for estimating residual creep life of polyester rope used in deepwater mooring lines. A statistical model has been developed to quantify the uncertainties in the method, such as the scatter in creep rupture test data and load sharing between sub-ropes. This model can be used to determine the required test load, duration and number of ARELIS tests, in order to guarantee a minimum creep life for a mooring line at its service load. Creep rupture tests have been performed to provide input for the statistical model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary antioxidants can affect cellular processes relevant to chronic inflammatory diseases such as atherosclerosis. We have used non- standard techniques to quantify effects of the antioxidant soy isoflavones genistein and daidzein on translocation of Nuclear Factor-KB (NF-KB) and nitric oxide (NO) production, which are important in these diseases. Translocation was quantified using confocal immunofluoresecence microscopy and ratiometric image analysis. NO was quantified by an electrochemical method after reduction of its oxidation products in cell culture supernatants. Activation of the RAW 264.7 murine monocyte/macrophage cell line increased the ratio of nuclear to cytoplasmic immunostaining for NF-kB. The increase was exacerbated by pre-treatment with genistein or daidzein. To show that decreases could also be detected, pre-treatment with the pine bark extract Pycnogenol (R) r was examined, and found to reduce translocation. NO production was also increased by activation, but was reduced by pre-treatment with genistein or daidzein. In the EA. hy926 human endothelial cell line, constitutive production was detectable and was increased by thrombin. The confocal and electrochemical methods gave data that agreed with results obtained using the established electromobility shift and Griess assays, but were more sensitive, more convenient, gave more detailed information and avoided the use of radioisotopes.