156 resultados para potentiodynamic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface pitting occurs when InP electrodes are anodized in KOH electrolytes at concentrations in the range 2 - 5 mol dm-3. The process has been investigated using atomic force microscopy (AFM) and the results correlated with cross-sectional transmission electron microscopy (TEM) and electroanalytical measurements. AFM measurements show that pitting of the surface occurs and the density of pits is observed to increase with time under both potentiodynamic and potentiostatic conditions. This indicates a progressive pit nucleation process and implies that the development of porous domains beneath the surface is also progressive in nature. Evidence for this is seen in plan view TEM images in which individual domains are seen to be at different stages of development. Analysis of the cyclic voltammograms of InP electrodes in 5 mol dm-3 KOH indicates that, above a critical potential for pit formation, the anodic current is predominantly time dependent and there is little differential dependence of the current on potential. Thus, pores continue to grow with time when the potential is high enough to maintain depletion layer breakdown conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous InP layers were formed electrochemically on (100) oriented n-InP substrates in various concentrations of aqueous KOH under dark conditions. In KOH concentrations from 2 mol dm-3 to 5 mol dm-3, a porous layer is obtained underneath a dense near-surface layer. The pores within the porous layer appear to propagate from holes through the near-surface layer. Transmission electron microscopy studies of the porous layers formed under both potentiodynamic and potentiostatic conditions show that both the thickness of the porous layer and the mean pore diameter decrease with increasing KOH concentration. The degree of porosity, estimated to be 65%, was found to remain relatively constant for all the porous layers studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Owing to an increased risk of aging population and a higher incidence of coronary artery disease (CAD), there is a need for more reliable and safer treatments. Numerous varieties of durable polymer-coated drug eluting stents (DES) are available in the market in order to mitigate in-stent restenosis. However, there are certain issues regarding their usage such as delayed arterial healing, thrombosis, inflammation, toxic corrosion by-products, mechanical stability and degradation. As a result, significant amount of research has to be devoted to the improvement of biodegradable polymer-coated implant materials in an effort to enhance their bioactive response. In this investigation, magneto-electropolished (MEP) and a novel biodegradable polymer coated ternary Nitinol alloys, NiTiTa and NiTiCr were prepared to study their bio and hemocompatibility properties. The initial interaction of a biomaterial with its surroundings is dependent on its surface characteristics such as, composition, corrosion resistance, work of adhesion and morphology. In-vitro corrosion tests such as potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were conducted to determine the coating stability and longevity. In-vitro hemocompatibility studies and HUVEC cell growth was performed to determine their thrombogenic and biocompatibility properties. Critical delamination load of the polymer coated Nitinol alloys was determined using Nano-scratch analysis. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions leached from Nitinol alloys on the viability of HUVEC cells. Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), contact angle meter and X-ray diffraction (XRD) were used to characterize the surface of the alloys. MEP treated and polymer coated (PC) Nitinol alloys displayed a corrosion resistant polymer coating as compared to uncoated alloys. MEP and PC has resulted in reduced Ni and Cr ion leaching from NiTi5Cr and subsequently low cytotoxicity. Thrombogenicity tests revealed significantly less platelet adhesion and confluent endothelial cell growth on polymer coated and uncoated ternary MEP Nitinol alloys. Finally, this research addresses the bio and hemocompatibility of MEP + PC ternary Nitinol alloys that could be used to manufacture blood contacting devices such as stents and vascular implants which can lead to lower U.S. healthcare spending.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 The present study aims to undertake research to improve the properties of vegetable oil based biodegradable lubricants for hydraulic oil applications. Different approaches were explored and adopted to investigate the thermo-oxidative stability, tribological property and corrosion behaviour of biodegradable basestocks as per the ISO 15380 specification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnesium alloys have been widely explored as potential biomaterials, but several limitations to using these materials have prevented their widespread use, such as uncontrollable degradation kinetics which alter their mechanical properties. In an attempt to further the applicability of magnesium and its alloys for biomedical purposes, two novel magnesium alloys Mg-Zn-Cu and Mg-Zn-Se were developed with the expectation of improving upon the unfavorable qualities shown by similar magnesium based materials that have previously been explored. The overall performance of these novel magnesium alloys has been assessesed in three distinct phases of research: 1) analysing the mechanical properties of the as-cast magnesium alloys, 2) evaluating the biocompatibility of the as-cast magnesium alloys through the use of in-vitro cellular studies, and 3) profiling the degradation kinetics of the as-cast magnesium alloys through the use of electrochemical potentiodynamic polarization techqnique as well as gravimetric weight-loss methods. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties with elongation at failure values of 12% and 13% for the Mg-Zn-Se and Mg-Zn-Se alloys, respectively. This is substantially higher than other as-cast magnesium alloys that have elongation at failure values that range from 7-10%. Biocompatibility tests revealed that both the Mg-Zn-Se and Mg-Zn-Cu alloys exhibit low cytotoxicity levels which are suitable for biomaterial applications. Gravimetric and electrochemical testing was indicative of the weight loss and initial corrosion behavior of the alloys once immersed within a simulated body fluid. The development of these novel as-cast magnesium alloys provide an advancement to the field of degradable metallic materials, while experimental results indicate their potential as cost-effective medical devices.