939 resultados para plant defence mechanisms
Resumo:
Dried plant food products are increasing in demand in the consumer market, leading to continuing research to develop better products and processing techniques. Plant materials are porous structures, which undergo large deformations during drying. For any given food material, porosity and other cellular parameters have a direct influence on the level of shrinkage and deformation characteristics during drying, which involve complex mechanisms. In order to better understand such mechanisms and their interrelationships, numerical modelling can be used as a tool. In contrast to conventional grid-based modelling techniques, it is considered that meshfree methods may have a higher potential for modelling large deformations of multiphase problem domains. This work uses a meshfree based microscale plant tissue drying model, which was recently developed by the authors. Here, the effects of porosity have been newly accounted for in the model with the objective of studying porosity development during drying and its influence on shrinkage at the cellular level. For simplicity, only open pores are modelled and in order to investigate the influence of different cellular parameters, both apple and grape tissues were used in the study. The simulation results indicated that the porosity negatively influences shrinkage during drying and the porosity decreases as the moisture content reduces (when open pores are considered). Also, there is a clear difference in the deformations of cells, tissues and pores, which is mainly influenced by the cell wall contraction effects during drying.
Resumo:
Dried plant food materials are one of the major contributors to the global food industry. Widening the fundamental understanding on different mechanisms of food material alterations during drying assists the development of novel dried food products and processing techniques. In this regard, case hardening is an important phenomenon, commonly observed during the drying processes of plant food materials, which significantly influences the product quality and process performance. In this work, a recent meshfree-based numerical model of the authors is further improved and used to simulate the influence of case hardening on shrinkage characteristics of plant tissues during drying. In order to model fluid and wall mechanisms in each cell, Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) are used. The model is fundamentally more capable of simulating large deformation of multiphase materials, when compared with conventional grid-based modelling techniques such as Finite Element Methods (FEM) or Finite Difference Methods (FDM). Case hardening is implemented by maintaining distinct moisture levels in the different cell layers of a given tissue. In order to compare and investigate different factors influencing tissue deformations under case hardening, four different plant tissue varieties (apple, potato, carrot and grape) are studied. The simulation results indicate that the inner cells of any given tissue undergo limited shrinkage and cell wall wrinkling compared to the case hardened outer cell layers of the tissues. When comparing unique deformation characteristics of the different tissues, irrespective of the normalised moisture content, the cell size, cell fluid turgor pressure and cell wall characteristics influence the tissue response to case hardening.
Resumo:
To produce commercially valuable ketocarotenoids in Solanum tuberosum, the 4, 4′ β-oxygenase (crtW) and 3, 3′ β-hydroxylase (crtZ) genes from Brevundimonas spp. have been expressed in the plant host under constitutive transcriptional control. The CRTW and CRTZ enzymes are capable of modifying endogenous plant carotenoids to form a range of hydroxylated and ketolated derivatives. The host (cv. Désirée) produced significant levels of nonendogenous carotenoid products in all tissues, but at the apparent expense of the economically critical metabolite, starch. Carotenoid levels increased in both wild-type and transgenic tubers following cold storage; however, stability during heat processing varied between compounds. Subcellular fractionation of leaf tissues revealed the presence of ketocarotenoids in thylakoid membranes, but not predominantly in the photosynthetic complexes. A dramatic increase in the carotenoid content of plastoglobuli was determined. These findings were corroborated by microscopic analysis of chloroplasts. In tuber tissues, esterified carotenoids, representing 13% of the total pigment found in wild-type extracts, were sequestered in plastoglobuli. In the transgenic tubers, this proportion increased to 45%, with esterified nonendogenous carotenoids in place of endogenous compounds. Conversely, nonesterified carotenoids in both wild-type and transgenic tuber tissues were associated with amyloplast membranes and starch granules.
Resumo:
The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16–18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.
Resumo:
Fortunately, plants have developed highly effective mechanisms with which to defend themselves when attacked by potentially disease-causing microorganisms. If not, then they would succumb to the many pathogenic fungi, bacteria, viruses, nematodes and insect pests, and disease would prevail. These natural defence systems of plants can be deliberately activated to provide some protection against the major pathogens responsible for causing severe yield losses in agricultural and horticultural crops. This is the basis of what is known as ‘induced’ or ‘acquired’ disease resistance in plants. Although the phenomenon of induced resistance has been known amongst plant pathologists for over 100 years, its inclusion into pest and disease management programmes has been a relatively recent development, ie. within the last 5 years. This review will discuss very briefly some of the characteristics of the induced resistance phenomenon, outline some of the advantages and limitations to its implementation and provide some examples within a postharvest pathology context. Finally some approaches being investigated by the fruit pathology team at DPI Indooroopilly and collaborators will be outlined.
Resumo:
The combination of dwindling petroleum reserves and population growth make the development of renewable energy and chemical resources more pressing than ever before. Plant biomass is the most abundant renewable source for energy and chemicals. Enzymes can selectively convert the polysaccharides in plant biomass into simple sugars which can then be upgraded to liquid fuels and platform chemicals using biological and/or chemical processes. Pretreatment is essential for efficient enzymatic saccharification of plant biomass and this article provides an overview of how organic solvent (organosolv) pretreatments affect the structure and chemistry of plant biomass, and how these changes enhance enzymatic saccharification. A comparison between organosolv pretreatments utilizing broadly different classes of solvents (i.e., low boiling point, high boiling point, and biphasic) is presented, with a focus on solvent recovery and formation of by-products. The reaction mechanisms that give rise to these by-products are investigated and strategies to minimize by-product formation are suggested. Finally, process simulations of organosolv pretreatments are compared and contrasted, and discussed in the context of an industrial-scale plant biomass to fermentable sugar process.
Resumo:
Glucosinolates are sulphur-containing glycosides found in brassicaceous plants that can be hydrolysed enzymatically by plant myrosinase or non-enzymatically to form primarily isothiocyanates and/or simple nitriles. From a human health perspective, isothiocyanates are quite important because they are major inducers of carcinogen-detoxifying enzymes. Two of the most potent inducers are benzyl isothiocyanate (BITC) present in garden cress (Lepidium sativum), and phenylethyl isothiocyanate (PEITC) present in watercress (Nasturtium officinale). Previous studies on these salad crops have indicated that significant amounts of simple nitriles are produced at the expense of the isothiocyanates. These studies also suggested that nitrile formation may occur by different pathways: (1) under the control of specifier protein in garden cress and (2) by an unspecified, non-enzymatic path in watercress. In an effort to understand more about the mechanisms involved in simple nitrile formation in these species, we analysed their seeds for specifier protein and myrosinase activities, endogenous iron content and glucosinolate degradation products after addition of different iron species, specific chelators and various heat treatments. We confirmed that simple nitrile formation was predominantly under specifier protein control (thiocyanate-forming protein) in garden cress seeds. Limited thermal degradation of the major glucosinolate, glucotropaeolin (benzyl glucosinolate), occurred when seed material was heated to >120 degrees C. In the watercress seeds, however, we show for the first time that gluconasturtiin (phenylethyl glucosinolate) undergoes a non-enzymatic, iron-dependent degradation to a simple nitrile. On heating the seeds to 120 degrees C or greater, thermal degradation of this heat-labile glucosinolate increased simple nitrile levels many fold.
Resumo:
Seed persistence of Gymnocoronis spilanthoides (D.Don) DC.; Asteraceae (Senegal tea), a serious weed of freshwater habitats, was examined in relation to burial status and different soil moisture regimes over a 3-year period. Seeds were found to be highly persistent, especially when buried. At the end of the experiment, 42.0%, 27.3% and 61.4% of buried seeds were viable following maintenance at field capacity, water logged and fluctuating (cycles of 1 week at field capacity followed by 3 weeks’ drying down) soil moisture conditions, respectively. Comparable viability values for surface-situated seeds were ~3% over all soil moisture regimes. Predicted times to1% viability are 16.2 years for buried seed and 3.8 years for surface-situated seed. Persistence was attributed primarily to the absence of light, a near-obligate requirement for germination in this species, although secondary dormancy was induced in some seeds. Previous work has demonstrated low fecundity in field populations of G. spilanthoides, which suggests that soil seed banks may not be particularly large. However, high levels of seed persistence, combined with ostensibly effective dispersal mechanisms, indicate that this weed may prove a difficult target for regional or state-wide eradication.
Resumo:
Increased interest in the cholesterol-lowering effect of plant sterols has led to development of plant sterol-enriched foods. When products are enriched, the safety of the added components must be evaluated. In the case of plant sterols, oxidation is the reaction of main concern. In vitro studies have indicated that cholesterol oxides may have harmful effects. Due their structural similarity, plant sterol oxidation products may have similar health implications. This study concentrated on developing high-performance liquid chromatography (HPLC) methods that enable the investigation of formation of both primary and secondary oxidation products and thus can be used for oxidation mechanism studies of plant sterols. The applicability of the methods for following the oxidation reactions of plant sterols was evaluated by using oxidized stigmasterol and sterol mixture as model samples. An HPLC method with ultraviolet and fluorescence detection (HPLC-UV-FL) was developed. It allowed the specific detection of hydroperoxides with FL detection after post-column reagent addition. The formation of primary and secondary oxidation products and amount of unoxidized sterol could be followed by using UV detection. With the HPLC-UV-FL method, separation between oxides was essential and oxides of only one plant sterol could be quantified in one run. Quantification with UV can lead to inaccuracy of the results since the number of double bonds had effect on the UV absorbance. In the case of liquid chromatography-mass spectrometry (LC-MS), separation of oxides with different functionalities was important because some oxides of the same sterol have similar molecular weight and moreover epimers have similar fragmentation behaviour. On the other hand, coelution of different plant sterol oxides with the same functional group was acceptable since they differ in molecular weights. Results revealed that all studied plant sterols and cholesterol seem to have similar fragmentation behaviour, with only relative ion abundances being slightly different. The major advantage of MS detection coupled with LC separation is the capability to analyse totally or partly coeluting analytes if these have different molecular weights. The HPLC-UV-FL and LC-MS methods were demonstrated to be suitable for studying the photo-oxidation and thermo-oxidation reactions of plant sterols. The HPLC-UV-FL method was able to show different formation rates of hydroperoxides during photo-oxidation. The method also confirmed that plant sterols have similar photo-oxidation behaviour to cholesterol. When thermo-oxidation of plant sterols was investigated by HPLC-UV-FL and LC-MS, the results revealed that the formation and decomposition of individual hydroperoxides and secondary oxidation products could be studied. The methods used revealed that all of the plant sterols had similar thermo-oxidation behaviour when compared with each other, and the predominant reactions and oxidation rates were temperature dependent. Overall, these findings showed that with these LC methods the oxidation mechanisms of plant sterols can be examined in detail, including the formation and degradation of individual hydroperoxides and secondary oxidation products, with less sample pretreatment and without derivatization.
Resumo:
The present study focuses on the translational strategies of Cocksfoot mottle virus (CfMV, genus Sobemovirus), which infects monocotyledonous plants. CfMV RNA lacks the 5'cap and the 3'poly(A) tail that ensure efficient translation of cellular messenger RNAs (mRNAs). Instead, CfMV RNA is covalently linked to a viral protein VPg (viral protein, genome-linked). This indicates that the viral untranslated regions (UTRs) must functionally compensate for the lack of the cap and poly(A) tail. We examined the efficacy of translation initiation in CfMV by comparing it to well-studied viral translational enhancers. Although insertion of the CfMV 5'UTR (CfMVe) into plant expression vectors improved gene expression in barley more than the other translational enhancers examined, studies at the RNA level showed that CfMVe alone or in combination with the CfMV 3'UTR did not provide the RNAs translational advantage. Mutation analysis revealed that translation initiation from CfMVe involved scanning. Interestingly, CfMVe also promoted translation initiation from an intercistronic position of dicistronic mRNAs in vitro. Furthermore, internal initiation occurred with similar efficacy in translation lysates that had reduced concentrations of eukaryotic initiation factor (eIF) 4E, suggesting that initiation was independent of the eIF4E. In contrast, reduced translation in the eIF4G-depleted lysates indicated that translation from internally positioned CfMVe was eIF4G-dependent. After successful translation initiation, leaky scanning brings the ribosomes to the second open reading frame (ORF). The CfMV polyprotein is produced from this and the following overlapping ORF via programmed -1 ribosomal frameshift (-1 PRF). Two signals in the mRNA at the beginning of the overlap program approximately every fifth ribosome to slip one nucleotide backwards and continue translation in the new -1 frame. This leads to the production of C-terminally extended polyprotein, which encodes the viral RNA-dependent RNA polymerase (RdRp). The -1 PRF event in CfMV was very efficient, even though it was programmed by a simple stem-loop structure instead of a pseudoknot, which is usually required for high -1 PRF frequencies. Interestingly, regions surrounding the -1 PRF signals improved the -1 PRF frequencies. Viral protein P27 inhibited the -1 PRF event in vivo, putatively by binding to the -1 PRF site. This suggested that P27 could regulate the occurrence of -1 PRF. Initiation of viral replication requires that viral proteins are released from the polyprotein. This is catalyzed by viral serine protease, which is also encoded from the polyprotein. N-terminal amino acid sequencing of CfMV VPg revealed that the junction of the protease and VPg was cleaved between glutamate (E) and asparagine (N) residues. This suggested that the processing sites used in CfMV differ from the glutamate and serine (S) or threonine (T) sites utilized in other sobemoviruses. However, further analysis revealed that the E/S and E/T sites may be used to cleave out some of the CfMV proteins.
Resumo:
The future use of genetically modified (GM) plants in food, feed and biomass production requires a careful consideration of possible risks related to the unintended spread of trangenes into new habitats. This may occur via introgression of the transgene to conventional genotypes, due to cross-pollination, and via the invasion of GM plants to new habitats. Assessment of possible environmental impacts of GM plants requires estimation of the level of gene flow from a GM population. Furthermore, management measures for reducing gene flow from GM populations are needed in order to prevent possible unwanted effects of transgenes on ecosystems. This work develops modeling tools for estimating gene flow from GM plant populations in boreal environments and for investigating the mechanisms of the gene flow process. To describe spatial dimensions of the gene flow, dispersal models are developed for the local and regional scale spread of pollen grains and seeds, with special emphasis on wind dispersal. This study provides tools for describing cross-pollination between GM and conventional populations and for estimating the levels of transgenic contamination of the conventional crops. For perennial populations, a modeling framework describing the dynamics of plants and genotypes is developed, in order to estimate the gene flow process over a sequence of years. The dispersal of airborne pollen and seeds cannot be easily controlled, and small amounts of these particles are likely to disperse over long distances. Wind dispersal processes are highly stochastic due to variation in atmospheric conditions, so that there may be considerable variation between individual dispersal patterns. This, in turn, is reflected to the large amount of variation in annual levels of cross-pollination between GM and conventional populations. Even though land-use practices have effects on the average levels of cross-pollination between GM and conventional fields, the level of transgenic contamination of a conventional crop remains highly stochastic. The demographic effects of a transgene have impacts on the establishment of trangenic plants amongst conventional genotypes of the same species. If the transgene gives a plant a considerable fitness advantage in comparison to conventional genotypes, the spread of transgenes to conventional population can be strongly increased. In such cases, dominance of the transgene considerably increases gene flow from GM to conventional populations, due to the enhanced fitness of heterozygous hybrids. The fitness of GM plants in conventional populations can be reduced by linking the selectively favoured primary transgene to a disfavoured mitigation transgene. Recombination between these transgenes is a major risk related to this technique, especially because it tends to take place amongst the conventional genotypes and thus promotes the establishment of invasive transgenic plants in conventional populations.
Resumo:
A single lineage of Nicotiana benthamiana is widely used as a model plant1 and has been instrumental in making revolutionary discoveries about RNA interference (RNAi), viral defence and vaccine production. It is peerless in its susceptibility to viruses and its amenability in transiently expressing transgenes2,3. These unparalleled characteristics have been associated both positively and negatively with a disruptive insertion in the RNA-dependent RNA polymerase 1 gene, Rdr14–6. For a plant so routinely used in research, the origin, diversity and evolution of the species, and the basis of its unusual abilities, have been relatively unexplored. Here, by comparison with wild accessions from across the spectrum of the species’ natural distribution, we show that the laboratory strain of N. benthamiana is an extremophile originating from a population that has retained a mutation in Rdr1 for ∼0.8 Myr and thereby traded its defence capacity for early vigour and survival in the extreme habitat of central Australia. Reconstituting Rdr1 activity in this isolate provided protection. Silencing the functional allele in a wild strain rendered it hypersusceptible and was associated with a doubling of seed size and enhanced early growth rate. These findings open the way to a deeper understanding of the delicate balance between protection and vigour.
Resumo:
Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.
Resumo:
This thesis clarifies important molecular pathways that are activated during the cell death observed in Huntington’s disease. Huntington’s disease is one of the most common inherited neurodegenerative diseases, which is primarily inherited in an autosomal dominant manner. HD is caused by an expansion of CAG repeats in the first exon of the IT15 gene. IT15 encodes the production of a Huntington’s disease protein huntingtin. Mutation of the IT15 gene results in a long stretch of polyQ residues close to the amino-terminal region of huntingtin. Huntington’s disease is a fatal autosomal neurodegenerative disorder. Despite the current knowledge of HD, the precise mechanism behind the selective neuronal death, and how the disease propagates, still remains an enigma. The studies mainly focused on the control of endoplasmic reticulum (ER) stress triggered by the mutant huntingtin proteins. The ER is a delicate organelle having essential roles in protein folding and calcium regulation. Even the slightest perturbations on ER homeostasis are effective enough to trigger ER stress and its adaptation pathways, called unfolded protein response (UPR). UPR is essential for cellular homeostasis and it adapts ER to the changing environment and decreases ER stress. If adaptation processes fail and stress is excessive and prolonged; irreversible cell death pathways are engaged. The results showed that inhibition of ER stress with chemical agents are able to decrease cell death and formation of toxic cell aggregates caused by mutant huntingtin proteins. The study concentrated also to the NF-κB (nuclear factor-kappaB) pathway, which is activated during ER stress. NF-κB pathway is capable to regulate the levels of important cellular antioxidants. Cellular antioxidants provide a first line of defence against excess reactive oxygen species. Excess accumulation of reactive oxygen species and subsequent activation of oxidative stress damages motley of vital cellular processes and induce cell degeneration. Data showed that mutant huntingtin proteins downregulate the expression levels of NF-κB and vital antioxidants, which was followed by increased oxidative stress and cell death. Treatment with antioxidants and inhibition of oxidative stress were able to counteract these adverse effects. In addition, thesis connects ER stress caused by mutant huntingtin to the cytoprotective autophagy. Autophagy sustains cellular balance by degrading potentially toxic cell proteins and components observed in Huntington’s disease. The results revealed that cytoprotective autophagy is active at the early points (24h) of ER stress after expression of mutant huntingtin proteins. GADD34 (growth arrest and DNA damage-inducible gene 34), which is previously connected to the regulation of translation during cell stress, was shown to control the stimulation of autophagy. However, GADD34 and autophagy were downregulated at later time points (48h) during mutant huntingtin proteins induced ER stress, and subsequently cell survival decreased. Overexpression GADD34 enhanced autophagy and decreased cell death, indicating that GADD34 plays a critical role in cell protection. The thesis reveales new interesting data about the neuronal cell death pathways seen in Huntington’s disease, and how cell degeneration is partly counteracted by various therapeutic agents. Expression of mutant huntingtin proteins is shown to alter signaling events that control ER stress, oxidative stress and autophagy. Despite that Huntington’s disease is mainly an untreatable disorder; these findings offer potential targets and neuroprotective strategies in designing novel therapies for Huntington’s disease.
Resumo:
Rhizoctonia spp. are ubiquitous soil inhabiting fungi that enter into pathogenic or symbiotic associations with plants. In general Rhizoctonia spp. are regarded as plant pathogenic fungi and many cause root rot and other plant diseases which results in considerable economic losses both in agriculture and forestry. Many Rhizoctonia strains enter into symbiotic mycorrhizal associations with orchids and some hypovirulent strains are promising biocontrol candidates in preventing host plant infection by pathogenic Rhizoctonia strains. This work focuses on uni- and binucleate Rhizoctonia (respectively UNR and BNR) strains belonging to the teleomorphic genus Ceratobasidium, but multinucleate Rhizoctonia (MNR) belonging to teleomorphic genus Thanatephorus and ectomycorrhizal fungal species, such as Suillus bovinus, were also included in DNA probe development work. Strain specific probes were developed to target rDNA ITS (internal transcribed spacer) sequences (ITS1, 5.8S and ITS2) and applied in Southern dot blot and liquid hybridization assays. Liquid hybridization was more sensitive and the size of the hybridized PCR products could be detected simultaneously, but the advantage in Southern hybridization was that sample DNA could be used without additional PCR amplification. The impacts of four Finnish BNR Ceratorhiza sp. strains 251, 266, 268 and 269 were investigated on Scot pine (Pinus sylvestris) seedling growth, and the infection biology and infection levels were microscopically examined following tryphan blue staining of infected roots. All BNR strains enhanced early seedling growth and affected the root architecture, while the infection levels remained low. The fungal infection was restricted to the outer cortical regions of long roots and typical monilioid cells detected with strain 268. The interactions of pathogenic UNR Ceratobasidium bicorne strain 1983-111/1N, and endophytic BNR Ceratorhiza sp. strain 268 were studied in single or dual inoculated Scots pine roots. The fungal infection levels and host defence-gene activity of nine transcripts [phenylalanine ammonia lyase (pal1), silbene synthase (STS), chalcone synthase (CHS), short-root specific peroxidase (Psyp1), antimicrobial peptide gene (Sp-AMP), rapidly elicited defence-related gene (PsACRE), germin-like protein (PsGER1), CuZn- superoxide dismutase (SOD), and dehydrin-like protein (dhy-like)] were measured from differentially treated and un-treated control roots by quantitative real time PCR (qRT-PCR). The infection level of pathogenic UNR was restricted in BNR- pre-inoculated Scots pine roots, while UNR was more competitive in simultaneous dual infection. The STS transcript was highly up-regulated in all treated roots, while CHS, pal1, and Psyp1 transcripts were more moderately activated. No significant activity of Sp-AMP, PsACRE, PsGER1, SOD, or dhy-like transcripts were detected compared to control roots. The integrated experiments presented, provide tools to assist in the future detection of these fungi in the environment and to understand the host infection biology and defence, and relationships between these interacting fungi in roots and soils. This study further confirms the complexity of the Rhizoctonia group both phylogenetically and in their infection biology and plant host specificity. The knowledge obtained could be applied in integrated forestry nursery management programmes.