940 resultados para pharmacologically active compounds
Resumo:
A myriad of methods are available for virtual screening of small organic compound databases. In this study we have successfully applied a quantitative model of consensus measurements, using a combination of 3D similarity searches (ROCS and EON), Hologram Quantitative Structure Activity Relationships (HQSAR) and docking (FRED, FlexX, Glide and AutoDock Vina), to retrieve cruzain inhibitors from collected databases. All methods were assessed individually and then combined in a Ligand-Based Virtual Screening (LBVS) and Target-Based Virtual Screening (TBVS) consensus scoring, using Receiving Operating Characteristic (ROC) curves to evaluate their performance. Three consensus strategies were used: scaled-rank-by-number, rank-by-rank and rank-by-vote, with the most thriving the scaled-rank-by-number strategy, considering that the stiff ROC curve appeared to be satisfactory in every way to indicate a higher enrichment power at early retrieval of active compounds from the database. The ligand-based method provided access to a robust and predictive HQSAR model that was developed to show superior discrimination between active and inactive compounds, which was also better than ROCS and EON procedures. Overall, the integration of fast computational techniques based on ligand and target structures resulted in a more efficient retrieval of cruzain inhibitors with desired pharmacological profiles that may be useful to advance the discovery of new trypanocidal agents.
Resumo:
Seaweeds are a major source of biologically active compounds . In the extracellular matrix of these organisms are sulfated polysaccharides that functions as structural components preventing it against dehydration. The fraction 0.9 (FucB) rich in sulfated fucans obtained from brown seaweed Dictyota menstrualis was chemical characterized and evaluated for pharmacological activity by testing anticoagulant activity, stimulatory action on the synthesis of an antithrombotic heparan sulfate, antioxidant activity and its effects in cell proliferation. The main components were FucB carbohydrates (49.80 ± 0.10 %) and sulfate (42.30 ± 0.015 %), with phenolic compounds ( 3.86 ± 0.016 %) and low protein contamination ( 0.58 ± 0.001 % ) . FucB showed polydisperse profile and analysis of signals in the infrared at 1262, 1074 and 930 cm -1 and 840 assigned to S = O bonds sulfate esters , CO bond presence of 3,6- anhydrogalactose , β -D- galactose non- sulfated sulfate and the axial position of fucose C4 , respectively. FucB exhibited moderate anticoagulant activity , the polysaccharides prolonged time (aPTT ) 200 ug ( > 90s ) partial thromboplastin FucB no effect on prothrombin time (PT), which corresponds to the extrinsic pathway of coagulation was observed. This stimulation promoted fraction of about 3.6 times the synthesis of heparan sulfate (HS) by endothelial cells of the rabbit aorta ( RAEC ) in culture compared with cells not treated with FucB . This has also been shown to compete for the binding site with heparin. The rich fraction sulfated fucans exhibited strong antioxidant activity assays on total antioxidant (109.7 and 89.5 % compared with BHT and ascorbic acid standards ) , reducing power ( 71 % compared to ascorbic acid ) and ferric chelation ( 71 , comparing with 5 % ascorbic acid). The fraction of algae showed cytostatic activity on the RAEC cells revealed that the increase of the synthesis of heparan sulfate is not related to proliferation. FucB showed antiproliferative action on cell lines modified as Hela and Hep G2 by MTT assay . These results suggest that FucB Dictyota menstrualis have anticoagulant , antithrombotic , antioxidant potential as well as a possible antitumor action, promoting the stimulation of the synthesis of antithrombotic HS by endothelial cells and is useful in the prevention of thrombosis, also due to its inhibitory action on species reactive oxygen ( ROS ) in some in vitro systems , being involved in promoting a hypercoagulable state
Resumo:
The focus of this study was the identification of compounds from plant extracts for use in crop protection. This paper reports on the toxic activity of fractions of leaf extracts of Ricinus communis L (Euphorbiaceae) and isolated active compounds in the leaf-cutting ant Atta sexdens rubropilosa Forel and its symbiotic fungus Leucoagaricus gongylophorus (Singer) Moller. The main compounds responsible for activity against the fungus and ant in leaf extracts of R communis were found to be fatty acids for the former and ricinine for the ants. (C) 2004 Society of Chemical Industry.
Resumo:
Six new sesquiterpene lactones, annuolide H ( 3), helivypolides F, H-J ( 4, 11-13), and helieudesmanolide A ( 6), together with known compounds, were isolated from polar bioactive fractions of Helianthus annuus cv. SH-222 and Stella fresh leaf water extracts. Spectroscopic analysis of the new data for 1,2-anhydroniveusin A and 1-methoxy-4,5-dihydroniveusin A corrects some previous assignments. The compounds were tested using the etiolated wheat coleoptile bioassay, and the most active compounds were assayed in standard target species ( STS) ( Lepidium sativum, Allium cepa, Lactuca sativa, Lycopersicon esculentum, and Triticum aestivum) from 5 x 10(-4) to 10(-5) M. The most phytotoxic compounds were helivypolide F and 15-hydroxy-3-dehydrodeoxyfruticin, both of which have a carbonyl group at C-3 conjugated with two double bonds.
Resumo:
Kalanchoe brasiliensis Cambess (Crassulaceae), commonly known as saião , coirama branca , folha grossa , is originally from Brazil and commonly found in São Paulo to Bahia, mainly in the coastal zone. Regarding of biological activities, most preclinical studies were found in the literature, mainly about the anti-inflammatory activity of extracts obtained from leaves and / or aerial parts of K. brasiliensis. As regards the chemical constitution, it has been reported mainly the presence of flavonoids in the leaves of the species, but until this moment did not knows which are the active compounds. Although it is a species widely used in traditional medicine in Brazil, there is no monograph about the quality parameters of the plant drug. In this context, this study aims to characterize and quantify the chemical markers of hydroethanolic extract (HE) from the leaves of K. brasiliensis, which can be used in quality control of plant drug and derivatives obtained from this species. The methodology was divided into two parts: i. Phytochemical study: to fractionate, isolate and characterizate of the chemical (s) marker (s) of the HE from the leaves of K. brasiliensis; ii. To Developed validate of analytical method by High Performance Liquid Chromatography (HPLC)-diode array detector (DAD) to quantify the chemical (s) marker (s) of the EH. i. The EH 50% was prepared by turbo extraction method. It was then submitted to liquid-liquid partition, obtaining dichloromethane, n-butanol and ethyl acetate (AcOEt) fractions. The AcOEt fraction was selected to continue the fractionation process, because it has a chemical profile rich in flavonoids. The acOEt fraction was submitted to column chromatography using different systems for obtaining the compound Kb1. To identify this compound, it was submitted to UV analysis ii. For quantitative analysis, the EH was analyzed by HPLC, using different methods. After selecting the most appropriate method, which showed satisfactory resolution and symmetrical peaks, it was validated according to parameters in the RE 899/2003. As result, it was obtained from the AcOEt fraction the compound Kb1 (2.7 mg). Until this moment, the basic nucleus was characterized by UV analysis using shift reagents. The partial chemical structure of the compound Kb1 was identified as a flavonol, containing hydroxyls in 3 , 4 position (ring A), 5 and 7 free (ring B) and a replacement of the C3 hydroxyl by a sugar. As the analysis were performed in the HPLC coupled to a DAD, we observed that the UV spectrum of the major peaks of EH from K. brasiliensis shown similar UV spectrum. According to the literature, it has been reported the presence of patuletin glycosydes derivatives in the leaves of this species. Therefore, it is suggested that the compound Kb1 is glycosylated patuletin derivative. Probably the sugar (s) unit(s) are linked in the C3 in the C ring. . Regarding the development of HPLC analytical method, the system used consists of phase A: water: formic acid (99,7:0,3, v / v) and phase B: methanol: formic acid (99,7:0,3, v / v), elution gradient of 40% B - 58% B in 50 minutes, ccolumn (Hichrom ®) C18 (250x4, 0 mm, 5 μm), flow rate 0.8 mL / min, UV detection at 370 nm, temperature 25 ° C. In the analysis performed with the co-injection of thecompound Kb1 + HE of K. brasiliensis was observed that it is one of the major compounds with a retention time of 12.47 minutes and had a content of 15.3% in EH of leaves from K. brasiliensis. The method proved to be linear, precise, accurate and reproducible. According to these results, it was observed that compound Kb1 can be used as a chemical marker of EH from leaves of K. brasiliensis, to assist in quality control of drug plant and its derivatives
Resumo:
Licania rigida Benth., Licania tomentosa (Benth.) Fritsch, and Couepia impressa Prance (Chrysobalanaceae family) plants have long been used medicinally by the people from Northeastern Brazil. Crude extracts and infusions of these plants have been applied in the treatment of several conditions such as diabetes and rheumatism, degenerative diseases with involvement of reactive oxygen species (ROS). The aim of this study was to evaluate the aqueous, ethanolic, and hydroethanolic leaves extracts antioxidant capacity of these species, using several in vitro assay systems (reducing power, DPPH● scavenging, the β-carotene linoleate model system and lipid peroxidation inhibition in rat brain homogenate, using thiobarbituric acid reactive substances - TBARS). The oral acute toxicity of aqueous extracts was also evaluated in vivo. Results revealed that these extracts possess a potent reducing power and DPPH scavenging ability, as well as the ability to prevent TBARS formation in rat brain homogenate in a concentration-dependent manner. Regarding in vivo oral acute toxicity of the aqueous species extracts, no toxic effects were observed upon evaluating physiological, hematological and biochemical parameters. The presence of high levels of phenolics and flavonoids was determined mainly in the ethanol extract. However, the C. impressa hydroethanolic extract, fractionated with hexane, chloroform and ethyl acetate for analysis by NMR 1H, showed more efficient results than the reference antioxidant Carduus marianus. The classes of organics compounds were determined were phenolics in the fraction of ethyl acetate and terpenes in chloroform and hexane fractions. The ethil acetate fraction had the highest content of flavonoids and increased scavenging capacity of DPPH●, possibly by the presence of phenolic compounds. Therefore, a detailed investigation of the phytochemical composition and in vivo study of the C. impressa hydroethanolic extract is suggested to characterize the active compounds of the species
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work a study was done using electrochemical cyclic voltammetry and differential pulse voltammetry for isoniazida (INH), ethambutol (EMB), rifampicina (RIF) and pyrazinamide (PZA) using the electrode boron-doped diamond (BDD) as working electrode. It also verified the applicability of the technique of differential pulse voltammetry in the quantification of the active compounds used in the treatment of tuberculosis, subsequently applying in samples of pharmaceutical formulation. Among the four active compounds studied, isoniazid showed the best results for the detection and quantification using differential pulse voltammetry. At pH 4 and pH 8, for the calibration curves to INH showed good linearity, with quantification limits of 6.15 mmol L-1 (0,844 ppm) and 4.08 mmol L-1 (0.560 ppm) for the respective pH. The proposed method can be used to determine drug isoniazid, for recovery values were obtained in approximately 100%
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Snake venom glands are a rich source of bioactive molecules such as peptides, proteins and enzymes that show important pharmacological activity leading to in local and systemic effects as pain, edema, bleeding and muscle necrosis. Most studies on pharmacologically active peptides and proteins from snake venoms have been concerned with isolation and structure elucidation through methods of classical biochemistry. As an attempt to examine the transcripts expressed in the venom gland of Bothrops jararacussu and to unveil the toxicological and pharmacological potential of its products at the molecular level, we generated 549 expressed sequence tags (ESTs) from a directional cDNA library. Sequences obtained from single-pass sequencing of randomly selected cDNA clones could be identified by similarities searches on existing databases, resulting in 197 sequences with significant similarity to phospholipase A(2) (PLA(2)), of which 83.2% were Lys49-PLA(2) homologs (BOJU-1), 0.1% were basic Asp49-PLA(2)s (BOJU-II) and 0.6% were acidic Asp49-PLA(2)s (BOJU-III). Adjoining this very abundant class of proteins we found 88 transcripts codifying for putative sequences of metalloproteases, which after clustering and assembling resulted in three full-length sequences: BOJUMET-I, BOJUMET-II and BOJUMET-III; as well as 25 transcripts related to C-type lectin like protein including a full-length cDNA of a putative galactose binding C-type lectin and a cluster of eight serine-proteases transcripts including a full-length cDNA of a putative serine protease. Among the full-length sequenced clones we identified a nerve growth factor (Bj-NGF) with 92% identity with a human NGF (NGHUBM) and an acidic phospholipase A2 (BthA-I-PLA(2)) displaying 85-93% identity with other snake venom toxins. Genetic distance among PLA(2)s from Bothrops species were evaluated by phylogenetic analysis. Furthermore, analysis of full-length putative Lys49-PLA(2) through molecular modeling showed conserved structural domains, allowing the characterization of those proteins as group II PLA(2)s. The constructed cDNA library provides molecular clones harboring sequences that can be used to probe directly the genetic material from gland venom of other snake species. Expression of complete cDNAs or their modified derivatives will be useful for elucidation of the structure-function relationships of these toxins and peptides of biotechnological interest. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
Plants have been used for thousands of years to flavor and conserve food, to treat health disorders and to prevent diseases including epidemics. The knowledge of their healing properties has been transmitted over the centuries within and among human communities. Active compounds produced during secondary vegetal metabolism are usually responsible for the biological properties of some plant species used throughout the globe for various purposes, including treatment of infectious diseases. Currently, data on the antimicrobial activity of numerous plants, so far considered empirical, have been scientifically confirmed, concomitantly with the increasing number of reports on pathogenic microorganisms resistant to antimicrobials. Products derived from plants may potentially control microbial growth in diverse situations and in the specific case of disease treatment, numerous studies have aimed to describe the chemical composition of these plant antimicrobials and the mechanisms involved in microbial growth inhibition, either separately or associated with conventional antimicrobials. Thus, in the present work, medicinal plants with emphasis on their antimicrobial properties are reviewed.
Resumo:
The increasing environmental concern about chemical surfactants triggers attention to microbial-derived surface-active compounds essentially due to their low toxicity and biodegradable nature. At present, biosurfactants are predominantly used in remediation of pollutants; however, they show potential applications in many sectors of food industry. Associated with emulsion forming and stabilization, antiadhesive and antimicrobial activities are some properties of biosurfactants, which could be explored in food processing and formulation. Potential applications of microbial surfactants in food area and the use of agroindustrial wastes as alternative substrates for their production are discussed.
Resumo:
Pseudomonas strains are able to biosynthesize rhamnose-containing surfactants also known as rhamnolipids. These surface-active compounds are reviewed with respect to chemical structure, properties, biosynthesis, and physiological role, focusing on their production and the use of low-cost substrates such as wastes from food industries as alternative carbon sources. The use of inexpensive raw materials such as agroindustrial wastes is an attractive strategy to reduce the production costs associated with biosurfactant production and, at same time, contribute to the reduction of environmental impact generated by the discard of residues, and the treatment costs. Carbohydrate-rich substrates generated low rhamnolipid levels, whereas oils and lipid-rich wastes have shown excellent potential as alternative carbon sources.