945 resultados para patient selection
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
Background: Efforts to prevent the development of overweight and obesity have increasingly focused early in the life course as we recognise that both metabolic and behavioural patterns are often established within the first few years of life. Randomised controlled trials (RCTs) of interventions are even more powerful when, with forethought, they are synthesised into an individual patient data (IPD) prospective meta-analysis (PMA). An IPD PMA is a unique research design where several trials are identified for inclusion in an analysis before any of the individual trial results become known and the data are provided for each randomised patient. This methodology minimises the publication and selection bias often associated with a retrospective meta-analysis by allowing hypotheses, analysis methods and selection criteria to be specified a priori. Methods/Design: The Early Prevention of Obesity in CHildren (EPOCH) Collaboration was formed in 2009. The main objective of the EPOCH Collaboration is to determine if early intervention for childhood obesity impacts on body mass index (BMI) z scores at age 18-24 months. Additional research questions will focus on whether early intervention has an impact on children’s dietary quality, TV viewing time, duration of breastfeeding and parenting styles. This protocol includes the hypotheses, inclusion criteria and outcome measures to be used in the IPD PMA. The sample size of the combined dataset at final outcome assessment (approximately 1800 infants) will allow greater precision when exploring differences in the effect of early intervention with respect to pre-specified participant- and intervention-level characteristics. Discussion: Finalisation of the data collection procedures and analysis plans will be complete by the end of 2010. Data collection and analysis will occur during 2011-2012 and results should be available by 2013. Trial registration number: ACTRN12610000789066
Resumo:
Software to create individualised finite element (FE) models of the osseoligamentous spine using pre-operative computed tomography (CT) data-sets for spinal surgery patients has recently been developed. This study presents a geometric sensitivity analysis of this software to assess the effect of intra-observer variability in user-selected anatomical landmarks. User-selected landmarks on the osseous anatomy were defined from CT data-sets for three scoliosis patients and these landmarks were used to reconstruct patient-specific anatomy of the spine and ribcage using parametric descriptions. The intra-observer errors in landmark co-ordinates for these anatomical landmarks were calculated. FE models of the spine and ribcage were created using the reconstructed anatomy for each patient and these models were analysed for a loadcase simulating clinical flexibility assessment. The intra-observer error in the anatomical measurements was low in comparison to the initial dimensions, with the exception of the angular measurements for disc wedge and zygapophyseal joint (z-joint) orientation and disc height. This variability suggested that CT resolution may influence such angular measurements, particularly for small anatomical features, such as the z-joints, and may also affect disc height. The results of the FE analysis showed low variation in the model predictions for spinal curvature with the mean intra-observer variability substantially less than the accepted error in clinical measurement. These findings demonstrate that intra-observer variability in landmark point selection has minimal effect on the subsequent FE predictions for a clinical loadcase.
Resumo:
While genomics provide important information about the somatic genetic changes, and RNA transcript profiling can reveal important expression changes that correlate with outcome and response to therapy, it is the proteins that do the work in the cell. At a functional level, derangements within the proteome, driven by post-translational and epigenetic modifications, such as phosphorylation, is the cause of a vast majority of human diseases. Cancer, for instance, is a manifestation of deranged cellular protein molecular networks and cell signaling pathways that are based on genetic changes at the DNA level. Importantly, the protein pathways contain the drug targets in signaling networks that govern overall cellular survival, proliferation, invasion and cell death. Consequently, the promise of proteomics resides in the ability to extend analysis beyond correlation to causality. A critical gap in the information knowledge base of molecular profiling is an understanding of the ongoing activity of protein signaling in human tissue: what is activated and “in use” within the human body at any given point in time. To address this gap, we have invented a new technology, called reverse phase protein microarrays, that can generate a functional read-out of cell signaling networks or pathways for an individual patient obtained directly from a biopsy specimen. This “wiring diagram” can serve as the basis for both, selection of a therapy and patient stratification.
Resumo:
Background Supine imaging modalities provide valuable 3D information on scoliotic anatomy, but the altered spine geometry between the supine and standing positions affects the Cobb angle measurement. Previous studies report a mean 7°-10° Cobb angle increase from supine to standing, but none have reported the effect of endplate pre-selection or whether other parameters affect this Cobb angle difference. Methods Cobb angles from existing coronal radiographs were compared to those on existing low-dose CT scans taken within three months of the reference radiograph for a group of females with adolescent idiopathic scoliosis. Reformatted coronal CT images were used to measure supine Cobb angles with and without endplate pre-selection (end-plates selected from the radiographs) by two observers on three separate occasions. Inter and intra-observer measurement variability were assessed. Multi-linear regression was used to investigate whether there was a relationship between supine to standing Cobb angle change and eight variables: patient age, mass, standing Cobb angle, Risser sign, ligament laxity, Lenke type, fulcrum flexibility and time delay between radiograph and CT scan. Results Fifty-two patients with right thoracic Lenke Type 1 curves and mean age 14.6 years (SD 1.8) were included. The mean Cobb angle on standing radiographs was 51.9° (SD 6.7). The mean Cobb angle on supine CT images without pre-selection of endplates was 41.1° (SD 6.4). The mean Cobb angle on supine CT images with endplate pre-selection was 40.5° (SD 6.6). Pre-selecting vertebral endplates increased the mean Cobb change by 0.6° (SD 2.3, range −9° to 6°). When free to do so, observers chose different levels for the end vertebrae in 39% of cases. Multi-linear regression revealed a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility (p = 0.001), age (p = 0.027) and standing Cobb angle (p < 0.001). The 95% confidence intervals for intra-observer and inter-observer measurement variability were 3.1° and 3.6°, respectively. Conclusions Pre-selecting vertebral endplates causes minor changes to the mean supine to standing Cobb change. There is a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility such that this difference can be considered a potential alternative measure of spinal flexibility.
Resumo:
Culturally, philosophically and religiously diverse medical systems including Western medicine, Traditional Chinese Medicine, Ayurvedic Medicine and Homeopathic Medicine, once situated in places and times relatively unconnected from each other, currently co-exist to a point where patients must choose which system to consult. These decisions require comparative analyses, yet the divergence in key underpinning assumptions is so great that comparisons cannot easily be made. However, diverse medical systems can be meaningfully juxtaposed for the purpose of making practical decisions if relevant information is presented appropriately. Information regarding privacy provisions inherent in the typical practice of each medical system is an important element in this juxtaposition. In this paper the information needs of patients making decisions regarding the selection of a medical system are examined.
Resumo:
Only some of the information contained in a medical record will be useful to the prediction of patient outcome. We describe a novel method for selecting those outcome predictors which allow us to reliably discriminate between adverse and benign end results. Using the area under the receiver operating characteristic as a nonparametric measure of discrimination, we show how to calculate the maximum discrimination attainable with a given set of discrete valued features. This upper limit forms the basis of our feature selection algorithm. We use the algorithm to select features (from maternity records) relevant to the prediction of failure to progress in labour. The results of this analysis motivate investigation of those predictors of failure to progress relevant to parous and nulliparous sub-populations.
Resumo:
Objective To quantify and compare the treatment effect and risk of bias of trials reporting biomarkers or intermediate outcomes (surrogate outcomes) versus trials using final patient relevant primary outcomes. Design Meta-epidemiological study. Data sources All randomised clinical trials published in 2005 and 2006 in six high impact medical journals: Annals of Internal Medicine, BMJ, Journal of the American Medical Association, Lancet, New England Journal of Medicine, and PLoS Medicine. Study selection Two independent reviewers selected trials. Data extraction Trial characteristics, risk of bias, and outcomes were recorded according to a predefined form. Two reviewers independently checked data extraction. The ratio of odds ratios was used to quantify the degree of difference in treatment effects between the trials using surrogate outcomes and those using patient relevant outcomes, also adjusted for trial characteristics. A ratio of odds ratios >1.0 implies that trials with surrogate outcomes report larger intervention effects than trials with patient relevant outcomes. Results 84 trials using surrogate outcomes and 101 using patient relevant outcomes were considered for analyses. Study characteristics of trials using surrogate outcomes and those using patient relevant outcomes were well balanced, except for median sample size (371 v 741) and single centre status (23% v 9%). Their risk of bias did not differ. Primary analysis showed trials reporting surrogate endpoints to have larger treatment effects (odds ratio 0.51, 95% confidence interval 0.42 to 0.60) than trials reporting patient relevant outcomes (0.76, 0.70 to 0.82), with an unadjusted ratio of odds ratios of 1.47 (1.07 to 2.01) and adjusted ratio of odds ratios of 1.46 (1.05 to 2.04). This result was consistent across sensitivity and secondary analyses. Conclusions Trials reporting surrogate primary outcomes are more likely to report larger treatment effects than trials reporting final patient relevant primary outcomes. This finding was not explained by differences in the risk of bias or characteristics of the two groups of trials.
Resumo:
BACKGROUND: Few educational resources have been developed to inform patients' renal replacement therapy (RRT) selection decisions. Patients progressing toward end stage renal disease (ESRD) must decide among multiple treatment options with varying characteristics. Complex information about treatments must be adequately conveyed to patients with different educational backgrounds and informational needs. Decisions about treatment options also require family input, as families often participate in patients' treatment and support patients' decisions. We describe the development, design, and preliminary evaluation of an informational, evidence-based, and patient-and family-centered decision aid for patients with ESRD and varying levels of health literacy, health numeracy, and cognitive function. METHODS: We designed a decision aid comprising a complementary video and informational handbook. We based our development process on data previously obtained from qualitative focus groups and systematic literature reviews. We simultaneously developed the video and handbook in "stages." For the video, stages included (1) directed interviews with culturally appropriate patients and families and preliminary script development, (2) video production, and (3) screening the video with patients and their families. For the handbook, stages comprised (1) preliminary content design, (2) a mixed-methods pilot study among diverse patients to assess comprehension of handbook material, and (3) screening the handbook with patients and their families. RESULTS: The video and handbook both addressed potential benefits and trade-offs of treatment selections. The 50-minute video consisted of demographically diverse patients and their families describing their positive and negative experiences with selecting a treatment option. The video also incorporated health professionals' testimonials regarding various considerations that might influence patients' and families' treatment selections. The handbook was comprised of written words, pictures of patients and health care providers, and diagrams describing the findings and quality of scientific studies comparing treatments. The handbook text was written at a 4th to 6th grade reading level. Pilot study results demonstrated that a majority of patients could understand information presented in the handbook. Patient and families screening the nearly completed video and handbook reviewed the materials favorably. CONCLUSIONS: This rigorously designed decision aid may help patients and families make informed decisions about their treatment options for RRT that are well aligned with their values.
Resumo:
© 2014, The International Biometric Society.A potential venue to improve healthcare efficiency is to effectively tailor individualized treatment strategies by incorporating patient level predictor information such as environmental exposure, biological, and genetic marker measurements. Many useful statistical methods for deriving individualized treatment rules (ITR) have become available in recent years. Prior to adopting any ITR in clinical practice, it is crucial to evaluate its value in improving patient outcomes. Existing methods for quantifying such values mainly consider either a single marker or semi-parametric methods that are subject to bias under model misspecification. In this article, we consider a general setting with multiple markers and propose a two-step robust method to derive ITRs and evaluate their values. We also propose procedures for comparing different ITRs, which can be used to quantify the incremental value of new markers in improving treatment selection. While working models are used in step I to approximate optimal ITRs, we add a layer of calibration to guard against model misspecification and further assess the value of the ITR non-parametrically, which ensures the validity of the inference. To account for the sampling variability of the estimated rules and their corresponding values, we propose a resampling procedure to provide valid confidence intervals for the value functions as well as for the incremental value of new markers for treatment selection. Our proposals are examined through extensive simulation studies and illustrated with the data from a clinical trial that studies the effects of two drug combinations on HIV-1 infected patients.
Resumo:
The process of determining the level of care and specific postacute care facility for stroke patients has not been adequately studied. The objective of this study was to better understand the factors that influence postacute care decisions by surveying stroke discharge planners. Requests were sent to discharge planners at 471 hospitals in the Northeast United States to complete an online survey regarding the factors impacting the selection of postacute care. Seventy-seven (16%) discharge planners completed the online survey. Respondents were mainly nurses and social workers and 73% reported ≥20 years healthcare experience. Patients and families were found to be significantly more influential than physicians (P < 0.001) and other clinicians (P = 0.04) in influencing postdischarge care. Other clinicians were significantly more influential than physicians (P < 0.001). Insurance and quality of postacute care were the factors likely to most affect the selection of postacute care facility. Insurance was also identified as the greatest barrier in the selection of level of postacute care (70%; P < 0.001) and specific postacute care facility (46%; P = 0.02). More than half reported that pressure to discharge patients quickly impacts a patients' final destination. Nonclinical factors are perceived by discharge planners to have a major influence on postacute stroke care decision making.
Resumo:
Three-dimensional reconstruction from volumetric medical images (e.g. CT, MRI) is a well-established technology used in patient-specific modelling. However, there are many cases where only 2D (planar) images may be available, e.g. if radiation dose must be limited or if retrospective data is being used from periods when 3D data was not available. This study aims to address such cases by proposing an automated method to create 3D surface models from planar radiographs. The method consists of (i) contour extraction from the radiograph using an Active Contour (Snake) algorithm, (ii) selection of a closest matching 3D model from a library of generic models, and (iii) warping the selected generic model to improve correlation with the extracted contour.
This method proved to be fully automated, rapid and robust on a given set of radiographs. Measured mean surface distance error values were low when comparing models reconstructed from matching pairs of CT scans and planar X-rays (2.57–3.74 mm) and within ranges of similar studies. Benefits of the method are that it requires a single radiographic image to perform the surface reconstruction task and it is fully automated. Mechanical simulations of loaded bone with different levels of reconstruction accuracy showed that an error in predicted strain fields grows proportionally to the error level in geometric precision. In conclusion, models generated by the proposed technique are deemed acceptable to perform realistic patient-specific simulations when 3D data sources are unavailable.
Resumo:
PurposeThe World Health Organisation (WHO) identified patient safety in surgery as an important public health matter and advised the adoption of a universal peri-operative surgical checklist. An adapted version of the WHO checklist has been mandatory in the National Health Service since 2010. Wrong intraocular lens (IOL) implantation is a particular safety concern in ophthalmology. The Royal College of Ophthalmologists launched a bespoke checklist for cataract surgery in 2010 to reduce the likelihood of preventable errors. We sought to ascertain the use of checklists in cataract surgery in 2012.Patients and methodsA survey of members of the Royal College of Ophthalmologists seeking views on the use of checklists in cataract surgery. Four hundred and sixty-nine completed responses were received (18% response rate).ResultsRespondents worked in England (75%), Scotland (11%), Wales (5%), Northern Ireland (2%), the Republic of Ireland (1%), and overseas (6%). Ninety-four per cent of respondents support the use of a checklist for cataract surgery and 85% say that they always use a checklist before cataract surgery. Sixty-seven per cent of cataract surgeons stated they undertake a pre-operative team brief. Thirty-six per cent use a cataract surgery checklist developed locally, 18% use the college's bespoke cataract surgery checklist, 39% use a generic surgical checklist, and 4% reported that they do not use a checklist.ConclusionNinety-three per cent of cataract surgeons responding to the questionnaire report using a surgical checklist and 67% use a team brief. However, only 54% use a checklist, which addresses the selection of the correct intraocular implant. We recommend wider adoption of checklists, which address risks relevant to cataract surgery, in particular the possibility of selection of an incorrect IOL.Eye advance online publication, 24 May 2013; doi:10.1038/eye.2013.101.
Resumo:
Aims: Cataract surgery is one of the most common surgeries performed, but its overuse has been reported. The threshold for cataract surgery has become increasingly lenient; therefore, the selection process and surgical need has been questioned. The aim of this study was to evaluate the changes associated with cataract surgery in patient-reported vision-related quality of life (VR-QoL).
Methods: A prospective cohort study was conducted. Consecutive patients referred to cataract clinics in an NHS unit in Scotland were identified. Those listed for surgery were invited to complete a validated questionnaire (TyPE) to measure VR-QoL pre- and post-operatively. TyPE has five different domains (near vision, distance vision, daytime driving, night-time driving, and glare) and a global score of vision. The influence of pre-operative visual acuity (VA) levels, vision, and lens status of the fellow eye on changes in VR-QoL were explored.
Results: A total of 320 listed patients were approached, of whom 36 were excluded. Among the 284 enrolled patients, 229 (81%) returned the questionnaire after surgery. Results revealed that the mean overall vision improved, as reported by patients. Improvements were also seen in all sub-domains of the questionnaire.
Conclusion: The majority of patients appear to have improvement in patient-reported VR-QoL, including those with good pre-operative VA and previous surgery to the fellow eye. VA thresholds may not capture the effects of the quality of life on patients. This information can assist clinicians to make more informed decisions when debating over the benefits of listing a patient for cataract extraction.
Resumo:
International Market Selection is an important step towards a successful internationalization strategy. This is no different for startup companies like MyHelpster. This work project was intended to help MyHelpster with their internationalization process by completing the IMS portion of it. The IMS process presented in this paper lead to the conclusion that MyHelpster’s next market for expansion should be the USA. In order to find as much success as possible the author suggests being patient and only expanding when the company has the necessary capital, experience and credibility. Both primary and secondary data were used to compile the qualitative and quantitative analyses.