905 resultados para partial least-squares regression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recursive least-squares algorithm with a forgetting factor has been extensively applied and studied for the on-line parameter estimation of linear dynamic systems. This paper explores the use of genetic algorithms to improve the performance of the recursive least-squares algorithm in the parameter estimation of time-varying systems. Simulation results show that the hybrid recursive algorithm (GARLS), combining recursive least-squares with genetic algorithms, can achieve better results than the standard recursive least-squares algorithm using only a forgetting factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-tuning proportional, integral and derivative control scheme based on genetic algorithms (GAs) is proposed and applied to the control of a real industrial plant. This paper explores the improvement in the parameter estimator, which is an essential part of an adaptive controller, through the hybridization of recursive least-squares algorithms by making use of GAs and the possibility of the application of GAs to the control of industrial processes. Both the simulation results and the experiments on a real plant show that the proposed scheme can be applied effectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the subset selection cost function includes an A-optimality design criterion to minimize the variance of the parameter estimates that ensures the adequacy and parsimony of the final model. An illustrative example is included to demonstrate the effectiveness of the new approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the potential of mid-infrared spectroscopy in conjunction with partial least squares (PLS) regression to predict various quality parameters in cheddar cheese. Cheddar cheeses (n = 24) were manufactured and stored at 8 degrees C for 12 mo. Mid-infrared spectra (640 to 4000/cm) were recorded after 4, 6, 9, and 12 mo storage. At 4, 6, and 9 mo, the water-soluble nitrogen (WSN) content of the samples was determined and the samples were also evaluated for 11 sensory texture attributes using descriptive sensory analysis. The mid-infrared spectra were subjected to a number of pretreatments, and predictive models were developed for all parameters. Age was predicted using scatter-corrected, 1st derivative spectra with a root mean square error of cross-validation (RMSECV) of 1 mo, while WSN was predicted using 1st derivative spectra (RMSECV = 2.6%). The sensory texture attributes most successfully predicted were rubbery, crumbly, chewy, and massforming. These attributes were modeled using 2nd derivative spectra and had, corresponding RMSECV values in the range of 2.5 to 4.2 on a scale of 0 to 100. It was concluded that mid-infrared spectroscopy has the potential to predict age, WSN, and several sensory texture attributes of cheddar cheese..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the linear equality-constrained least squares problem (LSE) of minimizing ${\|c - Gx\|}_2 $, subject to the constraint $Ex = p$. A preconditioned conjugate gradient method is applied to the Kuhn–Tucker equations associated with the LSE problem. We show that our method is well suited for structural optimization problems in reliability analysis and optimal design. Numerical tests are performed on an Alliant FX/8 multiprocessor and a Cray-X-MP using some practical structural analysis data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The l1-norm sparsity constraint is a widely used technique for constructing sparse models. In this contribution, two zero-attracting recursive least squares algorithms, referred to as ZA-RLS-I and ZA-RLS-II, are derived by employing the l1-norm of parameter vector constraint to facilitate the model sparsity. In order to achieve a closed-form solution, the l1-norm of the parameter vector is approximated by an adaptively weighted l2-norm, in which the weighting factors are set as the inversion of the associated l1-norm of parameter estimates that are readily available in the adaptive learning environment. ZA-RLS-II is computationally more efficient than ZA-RLS-I by exploiting the known results from linear algebra as well as the sparsity of the system. The proposed algorithms are proven to converge, and adaptive sparse channel estimation is used to demonstrate the effectiveness of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we develop a novel constrained recursive least squares algorithm for adaptively combining a set of given multiple models. With data available in an online fashion, the linear combination coefficients of submodels are adapted via the proposed algorithm.We propose to minimize the mean square error with a forgetting factor, and apply the sum to one constraint to the combination parameters. Moreover an l1-norm constraint to the combination parameters is also applied with the aim to achieve sparsity of multiple models so that only a subset of models may be selected into the final model. Then a weighted l2-norm is applied as an approximation to the l1-norm term. As such at each time step, a closed solution of the model combination parameters is available. The contribution of this paper is to derive the proposed constrained recursive least squares algorithm that is computational efficient by exploiting matrix theory. The effectiveness of the approach has been demonstrated using both simulated and real time series examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The representation of interfaces by means of the algebraic moving-least-squares (AMLS) technique is addressed. This technique, in which the interface is represented by an unconnected set of points, is interesting for evolving fluid interfaces since there is]to surface connectivity. The position of the surface points can thus be updated without concerns about the quality of any surface triangulation. We introduce a novel AMLS technique especially designed for evolving-interfaces applications that we denote RAMLS (for Robust AMLS). The main advantages with respect to previous AMLS techniques are: increased robustness, computational efficiency, and being free of user-tuned parameters. Further, we propose a new front-tracking method based on the Lagrangian advection of the unconnected point set that defines the RAMLS surface. We assume that a background Eulerian grid is defined with some grid spacing h. The advection of the point set makes the surface evolve in time. The point cloud can be regenerated at any time (in particular, we regenerate it each time step) by intersecting the gridlines with the evolved surface, which guarantees that the density of points on the surface is always well balanced. The intersection algorithm is essentially a ray-tracing algorithm, well-studied in computer graphics, in which a line (ray) is traced so as to detect all intersections with a surface. Also, the tracing of each gridline is independent and can thus be performed in parallel. Several tests are reported assessing first the accuracy of the proposed RAMLS technique, and then of the front-tracking method based on it. Comparison with previous Eulerian, Lagrangian and hybrid techniques encourage further development of the proposed method for fluid mechanics applications. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular orbital calculations were carried out on a set of 28 non-imidazole H(3) antihistamine compounds using the Hartree-Fock method in order to investigate the possible relationships between electronic structural properties and binding affinity for H3 receptors (pK(i)). It was observed that the frontier effective-for-reaction molecular orbital (FERMO) energies were better correlated with pK(i) values than highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. Exploratory data analysis through hierarchical cluster (HCA) and principal component analysis (PCA) showed a separation of the compounds in two sets, one grouping the molecules with high pK(i) values, the other gathering low pK(i) value compounds. This separation was obtained with the use of the following descriptors: FERMO energies (epsilon(FERMO)), charges derived from the electrostatic potential on the nitrogen atom (N(1)), electronic density indexes for FERMO on the N(1) atom (Sigma((FERMO))c(i)(2)). and electrophilicity (omega`). These electronic descriptors were used to construct a quantitative structure-activity relationship (QSAR) model through the partial least-squares (PLS) method with three principal components. This model generated Q(2) = 0.88 and R(2) = 0.927 values obtained from a training set and external validation of 23 and 5 molecules, respectively. After the analysis of the PLS regression equation and the values for the selected electronic descriptors, it is suggested that high values of FERMO energies and of Sigma((FERMO))c(i)(2), together with low values of electrophilicity and pronounced negative charges on N(1) appear as desirable properties for the conception of new molecules which might have high binding affinity. 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a method to structurally estimate an auction model using a variation of OLS, under commonly held assumptions in both auction theory and econometrics. In spite of its computational simplicity, the method applies to a wide variety of environments, including interdependent values in general, and certain forms of endogenous participation and bidder asymmetry. Furthermore, it can be used for hypotheses testing about the shape of the valuation distribution, valuation interdependence, or existence of bidder asymmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A literatura em franchising tem virtualmente ignorado o papel de aspectos psicologicos nos resultados interorganizacionais das empresas, a despeito de sua influencia nos resultados das organizações e da qualidade de relacionamento. Este estudo, portanto, tem por objetivo analisar a influência da personalidade e do potencial empreendedor na qualidade de relacionamento e desempenho financeiro na relação franqueador-franqueado, ao longo do tempo, sob a perspectiva dos franqueados. Este estudo analisa também o papel do tempo de relacionamento sobre a qualidade de relacionamento e o desempenho financeiro. Foi utilizado neste estudo um questionário de auto-preenchimento, enviado por e-mail, com o objetivo de recolher dados de uma amostra de 342 franqueados de 3 redes de franquias. A personalidade foi mensurada por meio dos “Cinco Grandes” traços de personalidade (escalas IPIP-B5): extroversão, agradabilidade, consciencia, estabilidade emocional e imaginação. O potencial empreendedor foi mensurado por meio do índice CEI (Carland Entrepreneurship Index). A qualidade do relacionamento foi estruturada como um constructo de segunda ordem, composto por 23 itens (incorporando confiança, comprometimento e satisfação com o relacionamento), e o desempenho financeiro foi representado por meio de uma escala de mensuração de crescimento de vendas e de rentabilidade. O tempo de relacionamento foi medido por meio dos meses de relacionamento entre franqueado e franqueador. As hipoteses foram testadas por meio de modelagem por equações estruturais, com a utilização do método de mínimos quadrados parciais (PLS), análise de regressão e análise de médias. Três das cinco dimensões da personalidade apresentaram o efeito previsto sobre as variáveis qualidade do relacionamento – agradabilidade (positivamente), estabilidade emocional (positivamente), e imaginação (positivamente). O desempenho financeiro foi influenciado, como previsto por consciência (positivamente), estabilidade emocional (positivamente), e imaginação (positivamente). Como esperado, a qualidade do relacionamento apresentou efeito positivo e significativo em relação ao desempenho financeiro. O potencial empreendedor apresentou o efeito positivo previsto apenas sobre desempenho. O tempo de relacionamento teve o efeito positivo esperado sobre o relacionamento franqueador-franqueado, em relação à qualidade do relacionamento e o desempenho financeiro, mas as diferenças entre as fases de relacionamento propostas foram apenas parcialmente confirmadas, uma vez que em somente duas fases (rotina e estabilização) a análise de médias mostrou diferenças significativas. Os resultados indicam que a personalidade influencia a qualidade de relacionamento e o desempenho, mas a meneira pela qual isso ocorre é diferente no contexto brasileiro, onde esta pesquisa foi realizada, dos achados da pesquisa conduzida na Austrália, sugerindo que fatores como cultura e estabilidade de mercado podem ter influencia sobre a relação entre traços de personalidade e qualidade de relacionamento, e traços de personalidade e desempenho financeiro. O potencial empreendedor parece influenciar positivamente o desempenho do franqueado, mas a sua influência não foi significativa em relação à qualidade do relacionamento. Os resultados também indicam a importância do tempo no desenvolvimento da qualidade de relacionamento e desempenho. Além disso, os relacionamentos de longo prazo estão relacionados a melhores avaliações de qualidade de relacionamento e desempenho financeiros por parte dos franqueados. As limitações do trabalho e sugestões para estudos futuros também são discutidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work calibration models were constructed to determine the content of total lipids and moisture in powdered milk samples. For this, used the near-infrared spectroscopy by diffuse reflectance, combined with multivariate calibration. Initially, the spectral data were submitted to correction of multiplicative light scattering (MSC) and Savitzsky-Golay smoothing. Then, the samples were divided into subgroups by application of hierarchical clustering analysis of the classes (HCA) and Ward Linkage criterion. Thus, it became possible to build regression models by partial least squares (PLS) that allowed the calibration and prediction of the content total lipid and moisture, based on the values obtained by the reference methods of Soxhlet and 105 ° C, respectively . Therefore, conclude that the NIR had a good performance for the quantification of samples of powdered milk, mainly by minimizing the analysis time, not destruction of the samples and not waste. Prediction models for determination of total lipids correlated (R) of 0.9955, RMSEP of 0.8952, therefore the average error between the Soxhlet and NIR was ± 0.70%, while the model prediction to content moisture correlated (R) of 0.9184, RMSEP, 0.3778 and error of ± 0.76%