639 resultados para online learning
Resumo:
This paper presents some findings regarding the interaction between different computer interfaces and different types of collective work. We want to claim that design in online learning environments has a paramount role in the type of collaboration that happens among participants. In this paper, we report on data that illustrate how teachers can collaborate online in order to learn how to use geometry software in teaching activities. A virtual environment which allows that construction to be carried out collectively, even if the participants are not sharing a classroom, is the setting for the research presented in this paper.
Resumo:
This study assessed the effectiveness of an online mathematical problem solving course designed using a social constructivist approach for pre-service teachers. Thirty-seven pre-service teachers at the Batu Lintang Teacher Institute, Sarawak, Malaysia were randomly selected to participate in the study. The participants were required to complete the course online without the typical face-to-face classes and they were also required to solve authentic mathematical problems in small groups of 4-5 participants based on the Polya’s Problem Solving Model via asynchronous online discussions. Quantitative and qualitative methods such as questionnaires and interviews were used to evaluate the effects of the online learning course. Findings showed that a majority of the participants were satisfied with their learning experiences in the course. There were no significant changes in the participants’ attitudes toward mathematics, while the participants’ skills in problem solving for “understand the problem” and “devise a plan” steps based on the Polya’s Model were significantly enhanced, though no improvement was apparent for “carry out the plan” and “review”. The results also showed that there were significant improvements in the participants’ critical thinking skills. Furthermore, participants with higher initial computer skills were also found to show higher performance in mathematical problem solving as compared to those with lower computer skills. However, there were no significant differences in the participants’ achievements in the course based on gender. Generally, the online social constructivist mathematical problem solving course is beneficial to the participants and ought to be given the attention it deserves as an alternative to traditional classes. Nonetheless, careful considerations need to be made in the designing and implementing of online courses to minimize problems that participants might encounter while participating in such courses.
Resumo:
Mobile learning, in the past defined as learning with mobile devices, now refers to any type of learning-on-the-go or learning that takes advantage of mobile technologies. This new definition shifted its focus from the mobility of technology to the mobility of the learner (O'Malley and Stanton 2002; Sharples, Arnedillo-Sanchez et al. 2009). Placing emphasis on the mobile learner’s perspective requires studying “how the mobility of learners augmented by personal and public technology can contribute to the process of gaining new knowledge, skills, and experience” (Sharples, Arnedillo-Sanchez et al. 2009). The demands of an increasingly knowledge based society and the advances in mobile phone technology are combining to spur the growth of mobile learning. Around the world, mobile learning is predicted to be the future of online learning, and is slowly entering the mainstream education. However, for mobile learning to attain its full potential, it is essential to develop more advanced technologies that are tailored to the needs of this new learning environment. A research field that allows putting the development of such technologies onto a solid basis is user experience design, which addresses how to improve usability and therefore user acceptance of a system. Although there is no consensus definition of user experience, simply stated it focuses on how a person feels about using a product, system or service. It is generally agreed that user experience adds subjective attributes and social aspects to a space that has previously concerned itself mainly with ease-of-use. In addition, it can include users’ perceptions of usability and system efficiency. Recent advances in mobile and ubiquitous computing technologies further underline the importance of human-computer interaction and user experience (feelings, motivations, and values) with a system. Today, there are plenty of reports on the limitations of mobile technologies for learning (e.g., small screen size, slow connection), but there is a lack of research on user experience with mobile technologies. This dissertation will fill in this gap by a new approach in building a user experience-based mobile learning environment. The optimized user experience we suggest integrates three priorities, namely a) content, by improving the quality of delivered learning materials, b) the teaching and learning process, by enabling live and synchronous learning, and c) the learners themselves, by enabling a timely detection of their emotional state during mobile learning. In detail, the contributions of this thesis are as follows: • A video codec optimized for screencast videos which achieves an unprecedented compression rate while maintaining a very high video quality, and a novel UI layout for video lectures, which together enable truly mobile access to live lectures. • A new approach in HTTP-based multimedia delivery that exploits the characteristics of live lectures in a mobile context and enables a significantly improved user experience for mobile live lectures. • A non-invasive affective learning model based on multi-modal emotion detection with very high recognition rates, which enables real-time emotion detection and subsequent adaption of the learning environment on mobile devices. The technology resulting from the research presented in this thesis is in daily use at the School of Continuing Education of Shanghai Jiaotong University (SOCE), a blended-learning institution with 35.000 students.
Resumo:
Our paper asks the question: Does mode of instruction format (live or online format) effect test scores in the principles of macroeconomics classes? Our data are from several sections of principles of macroeconomics, some in live format, some in online format, and all taught by the same instructor. We find that test scores for the online format, when corrected for sample selection bias, are four points higher than for the live format, and the difference is statistically significant. One possible explanation for this is that there was slightly higher human capital in the classes that had the online format. A Oaxaca decomposition of this difference in grades was conducted to see how much was due to human capital and how much was due to the differences in the rates of return to human capital. This analysis reveals that 25% of the difference was due to the higher human capital with the remaining 75% due to differences in the returns to human capital. It is possible that for the relatively older student with the appropriate online learning skill set, and with schedule constrains created by family and job, the online format provides them with a more productive learning environment than does the alternative traditional live class format. Also, because our data are limited to the student s academic transcript, we recommend future research include data on learning style characteristics, and the constraints formed by family and job choices.
Resumo:
ALINE is a pedagogical model developed to aid nursing faculty transition from passive to active learning. Based on constructionist theory, ALINE serves as a tool for organizing curriculum for online and classroom based interaction and permits positioning the student as the active player and the instructor, the facilitator to nursing competency.
Resumo:
El campo de estudio relacionado con los laboratorios remotos en el ámbito educativo de las ciencias y la ingeniería está sufriendo una notable expansión ante la necesidad de adaptar los procesos de aprendizaje en dichas áreas a las características y posibilidades de la formación online. Muchos de los recursos educativos basados en esta tecnología, existentes en la actualidad, presentan ciertas limitaciones que impiden alcanzar las competencias que se deben adquirir en los laboratorios de ingeniería. Estas limitaciones están relacionadas con diferentes aspectos de carácter técnico y formativo. A nivel técnico las limitaciones principales se centran en el grado de versatilidad que son capaces de proporcionar comparado con el que se dispone en un laboratorio tradicional y en el modo de interacción del usuario, que provoca que el estudiante no distinga claramente si está realizando acciones sobre sistemas reales o simulaciones. A nivel formativo las limitaciones detectadas son relevantes para poder alcanzar un aprendizaje significativo. En concreto están relacionadas principalmente con un escaso sentimiento de inmersión, una reducida sensación de realismo respecto a las operaciones que se realizan o la limitada posibilidad de realizar actividades de forma colaborativa. La aparición de nuevas tecnologías basadas en entornos inmersivos, unida a los avances producidos relacionados con el aumento de la capacidad gráfica de los ordenadores y del ancho de banda de acceso a Internet, han hecho factible que las limitaciones comentadas anteriormente puedan ser superadas gracias al desarrollo de nuevos recursos de aprendizaje surgidos de la fusión de laboratorios remotos y mundos virtuales 3D. Esta tesis doctoral aborda un trabajo de investigación centrado en proponer un modelo de plataformas experimentales, basado en la fusión de las dos tecnologías mencionadas, que permita generar recursos educativos online que faciliten la adquisición de competencias prácticas similares a las que se consiguen en un laboratorio tradicional vinculado a la enseñanza de la electrónica. El campo de aplicación en el que se ha focalizado el trabajo realizado se ha centrado en el área de la electrónica aunque los resultados de la investigación realizada se podrían adaptar fácilmente a otras disciplinas de la ingeniería. Fruto del trabajo realizado en esta tesis es el desarrollo de la plataforma eLab3D, basada en el modelo de plataformas experimentales propuesto, y la realización de dos estudios empíricos llevados a cabo con estudiantes de grado en ingeniería, muy demandados por la comunidad investigadora. Por un lado, la plataforma eLab3D, que permite llevar a cabo de forma remota actividades prácticas relacionadas con el diseño, montaje y prueba de circuitos electrónicos analógicos, aporta como novedad un dispositivo hardware basado en un sistema de conmutación distribuido. Dicho sistema proporciona un nivel de versatilidad muy elevado, a nivel de configuración de circuitos y selección de puntos de medida, que hace posible la realización de acciones similares a las que se llevan a cabo en los laboratorios presenciales. Por otra parte, los estudios empíricos realizados, que comparaban la eficacia educativa de una metodología de aprendizaje online, basada en el uso de la plataforma eLab3D, con la conseguida siguiendo una metodología clásica en los laboratorios tradicionales, mostraron que no se detectaron diferencias significativas en el grado de adquisición de los resultados de aprendizaje entre los estudiantes que utilizaron la plataforma eLab3D y los que asistieron a los laboratorios presenciales. Por último, hay que destacar dos aspectos relevantes relacionados directamente con esta tesis. En primer lugar, los resultados obtenidos en las experiencias educativas llevadas a cabo junto a valoraciones obtenidas por el profesorado que ha colaborado en las mismas han sido decisivos para que la plataforma eLab3D se haya integrado como recurso complementario de aprendizaje en titulaciones de grado de ingeniería de la Universidad Politécnica de Madrid. En segundo lugar, el modelo de plataformas experimentales que se ha propuesto en esta tesis, analizado por investigadores vinculados a proyectos en el ámbito de la fusión nuclear, ha sido tomado como referencia para generar nuevas herramientas de formación en dicho campo. ABSTRACT The field of study of remote laboratories in sciences and engineering educational disciplines is undergoing a remarkable expansion given the need to adapt the learning processes in the aforementioned areas to the characteristics and possibilities of online education. Several of the current educational resources based on this technology have certain limitations that prevent from reaching the required competencies in engineering laboratories. These limitations are related to different aspects of technical and educational nature. At the technical level, they are centered on the degree of versatility they are able to provide compared to a traditional laboratory and in the way the user interacts with them, which causes the student to not clearly distinguish if actions are being performed over real systems or over simulations. At the educational level, the detected limitations are relevant in order to reach a meaningful learning. In particular, they are mainly related to a scarce immersion feeling, a reduced realism sense regarding the operations performed or the limited possibility to carry out activities in a collaborative way. The appearance of new technologies based on immersive environments, together with the advances in graphical computer capabilities and Internet bandwidth access, have made the previous limitations feasible to be overcome thanks to the development of new learning resources that arise from merging remote laboratories and 3D virtual worlds. This PhD thesis tackles a research work focused on the proposal of an experimental platform model, based on the fusion of both mentioned technologies, which allows for generating online educational resources that facilitate the acquisition of practical competencies similar to those obtained in a traditional electronics laboratory. The application field, in which this work is focused, is electronics, although the research results could be easily adapted to other engineering disciplines. A result of this work is the development of eLab3D platform, based on the experimental platform model proposed, and the realization of two empirical studies with undergraduate students, highly demanded by research community. On one side, eLab3D platform, which allows to accomplish remote practical activities related to the design, assembling and test of analog electronic circuits, provides, as an original contribution, a hardware device based on a distributed switching system. This system offers a high level of versatility, both at the circuit configuration level and at the selection of measurement points, which allows for doing similar actions to those conducted in hands-on laboratories. On the other side, the empirical studies carried out, which compare the educational efficiency of an online learning methodology based on the use of eLab3D platform with that obtained following a classical methodology in traditional laboratories, shows that no significant differences in the acquired degree of learning outcomes among the students that used eLab3D platform and those that attended hands-on laboratories were detected. Finally, it is important to highlight two relevant aspects directly related with this thesis work. First of all, the results obtained in the educational experiences conducted, along with the assessment from the faculty that has collaborated in them, have been decisive to integrate eLab3D platform as a supplementary learning resource in engineering degrees at Universidad Politecnica de Madrid. Secondly, the experimental platform model originally proposed in this thesis, which has been analysed by nuclear fusion researchers, has been taken as a reference to generate new educational tools in that field.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-05
Resumo:
The potential of online learning has long afforded the hope of providing quality education to anyone, anywhere in the world. The recent development of Massive Open Online Courses (MOOCs) heralded an exciting new breakthrough by providing free academic instruction and professional skills development from the world’s leading universities to anyone with the sufficient resources to access the internet. The research in Advancing MOOCs for Development Initiative study was designed to analyze the MOOC landscape in developing countries and to better understand the motivations of MOOC users and afford insights on the advantages and limitations of MOOCs for workforce development outcomes. The key findings of this study challenge commonly held beliefs about MOOC usage in developing countries, defying typical characterizations of how people in resource constrained settings use technology for learning and employment. In fact, some of the findings are so contrary to what has been reported in the U.S. and other developed environments that they raise new questions for further investigation.
Resumo:
Virtual learning environments (VLEs) are computer-based online learning environments, which provide opportunities for online learners to learn at the time and location of their choosing, whilst allowing interactions and encounters with other online learners, as well as affording access to a wide range of resources. They have the capability of reaching learners in remote areas around the country or across country boundaries at very low cost. Personalized VLEs are those VLEs that provide a set of personalization functionalities, such as personalizing learning plans, learning materials, tests, and are capable of initializing the interaction with learners by providing advice, necessary instant messages, etc., to online learners. One of the major challenges involved in developing personalized VLEs is to achieve effective personalization functionalities, such as personalized content management, learner model, learner plan and adaptive instant interaction. Autonomous intelligent agents provide an important technology for accomplishing personalization in VLEs. A number of agents work collaboratively to enable personalization by recognizing an individual's eLeaming pace and reacting correspondingly. In this research, a personalization model has been developed that demonstrates dynamic eLearning processes; secondly, this study proposes an architecture for PVLE by using intelligent decision-making agents' autonomous, pre-active and proactive behaviors. A prototype system has been developed to demonstrate the implementation of this architecture. Furthemore, a field experiment has been conducted to investigate the performance of the prototype by comparing PVLE eLearning effectiveness with a non-personalized VLE. Data regarding participants' final exam scores were collected and analyzed. The results indicate that intelligent agent technology can be employed to achieve personalization in VLEs, and as a consequence to improve eLeaming effectiveness dramatically.
Resumo:
The current trend among many universities is to increase the number of courses available online. However, there are fundamental problems in transferring traditional education courses to virtual formats. Delivering current curricula in an online format does not assist in overcoming the negative effects on student motivation which are inherent in providing information passively. Using problem-based learning (PBL) online is a method by which computers can become a tool to encourage active learning among students. The delivery of curricula via goal-based scenarios allows students to learn at different rates and can successfully shift online learning from memorization to discovery. This paper reports on a Web-based e-health course that has been delivered via PBL for the past 12 months. Thirty distance-learning students undertook postgraduate courses in e-health delivered via the Internet (asynchronous communication). Data collected via online student surveys indicated that the PBL format was both flexible and interesting. PBL has the potential to increase the quality of the educational experience of students in online environments.
Resumo:
Online learning is discussed from the viewpoint of Bayesian statistical inference. By replacing the true posterior distribution with a simpler parametric distribution, one can define an online algorithm by a repetition of two steps: An update of the approximate posterior, when a new example arrives, and an optimal projection into the parametric family. Choosing this family to be Gaussian, we show that the algorithm achieves asymptotic efficiency. An application to learning in single layer neural networks is given.
Resumo:
We developed a parallel strategy for learning optimally specific realizable rules by perceptrons, in an online learning scenario. Our result is a generalization of the Caticha–Kinouchi (CK) algorithm developed for learning a perceptron with a synaptic vector drawn from a uniform distribution over the N-dimensional sphere, so called the typical case. Our method outperforms the CK algorithm in almost all possible situations, failing only in a denumerable set of cases. The algorithm is optimal in the sense that it saturates Bayesian bounds when it succeeds.
Resumo:
We present a novel analysis of the state of the art in object tracking with respect to diversity found in its main component, an ensemble classifier that is updated in an online manner. We employ established measures for diversity and performance from the rich literature on ensemble classification and online learning, and present a detailed evaluation of diversity and performance on benchmark sequences in order to gain an insight into how the tracking performance can be improved. © Springer-Verlag 2013.
Resumo:
In this paper we study the self-organising behaviour of smart camera networks which use market-based handover of object tracking responsibilities to achieve an efficient allocation of objects to cameras. Specifically, we compare previously known homogeneous configurations, when all cameras use the same marketing strategy, with heterogeneous configurations, when each camera makes use of its own, possibly different marketing strategy. Our first contribution is to establish that such heterogeneity of marketing strategies can lead to system wide outcomes which are Pareto superior when compared to those possible in homogeneous configurations. However, since the particular configuration required to lead to Pareto efficiency in a given scenario will not be known in advance, our second contribution is to show how online learning of marketing strategies at the individual camera level can lead to high performing heterogeneous configurations from the system point of view, extending the Pareto front when compared to the homogeneous case. Our third contribution is to show that in many cases, the dynamic behaviour resulting from online learning leads to global outcomes which extend the Pareto front even when compared to static heterogeneous configurations. Our evaluation considers results obtained from an open source simulation package as well as data from a network of real cameras. © 2013 IEEE.