992 resultados para multiply charged ions
Resumo:
In this work, a laser-produced plasma extreme ultraviolet source and a free electron laser were used to create Ne photo-ionized plasmas. In both cases, a radiation beam was focused onto a gas stream injected into a vacuum chamber synchronously with the radiation pulse. Extreme ultraviolet radiation from the plasma spanned a wide spectral range with pronounced maximum centered at lambda = 11 +/- 1 nm while the free electron laser pulses were emitted at a wavelength of 32 nm. The power density of the focused plasma radiation was approximately 2 x 10(7) W/cm(2) and was seven orders of magnitude lower compared with the focused free electron laser beam. Radiation fluences in both experimental conditions were comparable. Despite quite different spectral characteristics and extremely different power densities, emission spectra of both photo-ionized plasmas consist of the same spectral lines within a wavelength range of 20 to 50 nm, however, with different relative intensities of the corresponding lines. The dominating spectral lines originated from singly charged ions (Ne II); however, Ne III lines were also detected. Additionally, computer simulations of the emission spectra, obtained for photo-ionized plasmas, driven by the plasma extreme ultraviolet source, were performed. The corresponding measured and calculated spectra are presented. An electron temperature and ionic composition were estimated. Differences between the experimental spectra, obtained for both irradiation conditions, were analyzed. The differences were attributed mainly to different energies of driving photons.
Resumo:
Within the independent particle model we solve the time-dependent single-particle equation using ab initio SCF-DIRAC-FOCK-SLATER wavefunctions as a basis. To reinstate the many-particle aspect of the collision system we use the inclusive probability formalism to answer experimental questions. As an example we show an application to the case of S{^15+} on Ar where experimental data on the K-K charge transfer are available for a wide range of impact energies from 4.7 to 90 MeV. Our molecular adiabatic calculations and the evaluation using the inclusive probability formalism show good results in the low energy range from 4.7 to 16 MeV impact energy.
Resumo:
The first direct observation of a hyperfine splitting in the optical regime is reported. The wavelength of the M1 transition between the F = 4 and F = 5 hyperfine levels of the ground state of hydrogenlike ^209 Bi^82+ was measured to be \lamda_0 = 243.87(4) nm by detection of laser induced fluorescence at the heavy-ion storage ring ESR at GSI. In addition, the lifetime of the laser excited F = 5 sublevel was determined to be \tau_0 = 0.351(16) ms. The method can be applied to a number of other nuclei and should allow a novel test of QED corrections in the previously unexplored combination of strong magnetic and electric fields in highly charged ions.
Resumo:
Die photoneninduzierte Fluoreszenzspektroskopie (PIFS) wurde als Methode zur Untersuchung von Fluoreszenzspektren der Edelgasatome Krypton und Xenon nach Anregung mit Synchrotronstrahlung des Elektronenspeicherrings BESSY II, Berlin, benutzt. Die Anregung der Edelgase erfolgte bei Zimmertemperatur und einem Druck von 40mTorr mit extrem schmalbandiger Strahlung mit DeltaE=3meV bei 21,55eV. Die untersuchten Anregungsenergiebereiche waren bei Krypton zwischen 29,4eV und 29,8eV und bei Xenon zwischen 23,74eV und 23,80eV, zwischen 24,4eV und 24,7eV und zwischen 25,25eV und 25,5eV. Die Anregungsenergiebereiche waren so gewählt, um Autoionisationsresonanzen untersuchen zu können, die erstmalig von Codling und Madden [J. Res. Nat. B. Stan. 1972, 76A, 1-12] veröffentlicht worden sind. Besonders die Besetzung in Abhängigkeit der Anregungsenergie von Satellitenzuständen in den jeweiligen einfach geladenen Ionen durch vorherige Anregung der genannten Autoionisationsresonanzen war der Fokus der vorliegenden Arbeit.
Resumo:
Dispersions of saturated anionic phospholipid dimyristoyl phosphatidylglycerol (DMPG) have been extensively studied regarding their peculiar thermostructural behavior. At low ionic strength, the gel-fluid transition is spread along nearly 17 degrees C, displaying several thermal events in the calorimetric profile that is quite different from the single sharp peak around 23 degrees C found for higher ionic strength DMPG dispersions. To investigate the role of charge in the bilayer transition, we carefully examine the temperature dependence of the electrical conductivity of DMPG dispersions at different concentrations, correlating the data with the corresponding differential scanning calorimetry (DSC) traces. Electrical conductivity together with electrophoretic mobility measurements allowed the calculation of the dependence of the degree of ionization of DMPG vesicles on lipid concentration and temperature. It was shown that there is a decrease in vesicle charge as the lipid concentration increases, which is probably correlated with the increase in the concentration of bulk Na(+). Apart from the known increase in the electrical conductivity along the DMPG temperature transition region, a sharp rise was observed at the bilayer pretransition for all lipid concentrations studied, possibly indicating that the beginning of the chain melting process is associated with an increase in bilayer ionization. It is confirmed here that the gel-fluid transition of DMPG at low ionic strength is accompanied by a huge increase in the dispersion viscosity. However, it is shown that this measured macroviscosity is distinct from the local viscosity felt by either charged ions or DMPG charged aggregates in measurements of electrical conductivity or electrophoretic mobility, Data presented here give support to the idea that DMPG vesicles, at low ionic strength, get more ionized along the temperature transition region and could be perforated and/or deformed vesicle structures.
Resumo:
Spongiolite from Mato Grosso do Sul (Brazil), natural inorganic composite constituted of silica needles, was treated with concentrated phosphoric acid at high temperatures. Superficial coating of the needles was proved to be constituted of silicon diphosphate, a compound offering six-coordinated silicon sites. Owing to the affinity of three charged ions to phosphate groups, this coating acts as specific adsorbent for the rare earth elements which prefer octahedral coordination (starting from samarium, yttrium included). The uptake of lanthanum and neodymium are significantly lower due to different coordination tendencies. Lanthanide fixation upon silica with PO4 groups anchored on its surface may be useful in the manufacturing of special phosphate-silicate glasses. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In dieser Arbeit wird eine Messung des magnetischen Moments des Elektronsin wasserstoffähnlichem Kohlenstoff vorgestellt. Das Ergebnis derMessungen an einem einzelnen gespeicherten12C5+-Ionist: g = 2,001 041 596 4 (8)(6)(44). Der erste Fehler bezeichnet die statistischeUnsicherheit, der zweite Fehler die systematische Unsicherheit. Der letzteFehler resultiert aus der Unsicherheit des Verhältnisses der Massedes 12C5+-Ions und der des Elektrons. Die hohe Genauigkeitder Messung wurde durch die räumliche Trennung des Nachweises derAusrichtung des Spins und des Induzierens der spin-flips erreicht. DieMessung stellt die bisher genaueste Bestimmung eines atomaren g-Faktorsdar und bestätigt den theoretischen Wert der Göteborger Theoriegruppeauf 7*10-9. Zusammen mit diesen Rechnungen verifiziert sie dieBound-State-QED-Korrekturen genauer als 1%. Somit ist der g-Faktor desin12C5+ gebunden Elektrons neben Messungen der Lambshiftin schweren hochgeladenen Ionen der genaueste Test der Bound-State-QED.
Wird auf die Richtigkeit der Berechnung des g-Faktors des gebundenenElektrons vertraut, kann folgender Wert für die atomare Masse desElektrons gewonnen werden: me= 0,000 548 579 912 8 (15) u.
Resumo:
Studies in regions of the nuclear chart in which the model predictions of properties of nuclei fail can bring a better understanding of the strong interaction in the nuclear medium. To such regions belongs the so called "island of inversion" centered around Ne, Na and Mg isotopes with 20 neutrons in which unexpected ground-state spins, large deformations and dense low-energy spectra appear. This is a strong argument that the magic N = 20 is not a closed shell in this area. In this thesis investigations of isotope shifts of stable 24,25,26Mg, as well as spins and magnetic moments of short-lived 29,31Mg are presented. The successful studies were performed at the ISOLDE facility at CERN using collinear laser and beta-NMR spectroscopy techniques. The isotopes were investigated as single-charged ions in the 280-nm transition from the atomic ground state 2S1/2 to one of the two lowest excited states 2P1/2,3/2 using continuous wave laser beams. The isotope-shift measurements with fluorescence detection for the three stable isotopes show that it is feasible to perform the same studies on radioactive Mg isotopes up to the "island of inversion". This will allow to determine differences in the mean charge square radii and interpret them in terms of deformation. The high detection efficiency for beta particles and optical pumping close to saturation allowed to obtain very good beta-asymmetry signals for 29Mg and 31Mg with half-lives around 1 s and production yields about 10^5 ions/s. For this purpose the ions were implanted into a host crystal lattice. Such detection of the atomic resonances revealed their hyperfine structure, which gives the sign and a first estimate of the value of the magnetic moment. The nuclear magnetic resonance gave also their g-factors with the relative uncertainty smaller than 0.2 %. By combining the two techniques also the nuclear spin of both isotopes could be unambiguously determined. The measured spins and g-factors show that 29Mg with 17 neutrons lies outside the "island of inversion". On the other hand, 31Mg with 19 neutrons has an unexpected ground-state spin which can be explained only by promoting at least two neutrons across the N = 20 shell gap. This places the above nucleus inside the "island". However, modern shell-model approaches cannot predict this level as the ground state but only as one of the low-lying states, even though they reproduce very well the experimental g-factor. This indicates that modifications to the available interactions are required. Future measurements include isotope shift measurements on radioactive Mg isotopes and beta-NMR studies on 33Mg.
Resumo:
Die vorliegende Arbeit befasst sich mit der Entwicklung und dem Aufbau eines Experiments zur hochpräzisen Bestimmung des g-Faktors gebundener Elektronen in hochgeladenen Ionen. Der g-Faktor eines Teilchens ist eine dimensionslose Konstante, die die Stärke der Wechselwirkung mit einem magnetischen Feld beschreibt. Im Falle eines an ein hochgeladenes Ion gebundenen Elektrons, dient es als einer der genausten Tests der Quantenelektrodynamik gebundener Zustande (BS-QED). Die Messung wird in einem dreifach Penning-Fallen System durchgeführt und basiert auf dem kontinuierlichen Stern-Gerlach-Effekt. Der erste Teil dieser Arbeit gibt den aktuellen Wissensstand über magnetische Momente wieder. Der hier gewählte experimentelle Aufbau wird begründet. Anschließend werden die experimentellen Anforderungen und die verwendeten Messtechniken erläutert. Das Ladungsbrüten der Ionen - einer der wichtigsten Aufgaben dieser Arbeit - ist dargestellt. Seine Realisierung basiert auf einer Feld-Emissions-Spitzen-Anordnung, die die Messung des Wirkungsquerschnitts für Elektronenstoßionisation ermöglicht. Der letzte Teil der Arbeit widmet sich der Entwicklung und dem Aufbau des Penning-Fallen Systems, sowie der Implementierung des Nachweisprozesses. Gegenwärtig ist der Aufbau zur Erzeugung hochgeladener Ionen und der dazugehörigen Messung des g-Faktors abgeschlossen, einschließlich des Steuerprogramms für die erste Datennahme. Die Ionenerzeugung und das Ladungsbrüten werden die nächsten Schritte sein.
Resumo:
Der Einsatz von Penningfallen in der Massenspektrometrie hat zu einem einmaligen Genauigkeitssprung geführt. Dadurch wurden Massenwerte verschiedenster Atome zu wichtigen Eingangsparametern bei immer mehr physikalischen Fragestellungen. Die Massenspektrometrie mit Hilfe von Penningfallen basiert auf der Bestimmung der freien Zyklotronfrequenz eines Ions in einem homogenen Magnetfeld νc=qB/(2πm). Sie wird mit Flugzeitmethode (TOF-ICR) bestimmt, wobei eine relative Massenungenauigkeit δm/m von wenigen 10^-9 bei Nukliden mit Lebensdauern von <500 ms erreicht wird. Dies wurde durch die im Rahmen dieser Arbeit erstmals in der Penningfallen-Massenspektrometrie eingesetzten Ramsey-Methode möglich. Dabei werden zeitlich separierte, oszillierenden Feldern zur resonanten Ionenanregung genutzt, um die Frequenzmessung durch die Flugzeitmethode zu verbessern. Damit wurden am Penningfallenmassenspektrometer ISOLTRAP an ISOLDE/CERN die Massen der Nuklide 26,27Al und 38,39Ca bestimmt. Alle Massen wurden in die „Atomic Mass Evaluation“ eingebettet. Die Massenwerte von 26Al und 38Ca dienten insbesondere zu Tests des Standardmodells. Um mit Massenwerten fundamentale Symmetrien oder die Quantenelektrodynamik (QED) in extremen Feldern zu testen wurde ein neues Penningfallenprojekt (PENTATRAP) für hochpräzise Massenmessungen an hochgeladenen Ionen konzipiert. In dieser Doktorarbeit wurde vornehmlich die Entwicklung der Penningfallen betrieben. Eine Neuerung bei Penningfallenexperimenten ist dabei die permanente Beobachtung des Magnetfeldes B und seiner zeitlichen Fluktuationen durch so genannte „Monitorfallen“.
Resumo:
In dieser Arbeit werden der experimentelle Aufbau und erste Messungen für die Bestimmung des g-Faktors des Elektrons gebunden in wasserstoff- und lithiumähnlichen mittelschweren Ionen beschrieben. Mit dem hochpräzisenWert des g-Faktors können theoretische Berechnungen der Quantenelektrodynamik gebundener Zustände überprüft werden. Die Messungen werden in einem Dreifach-Penningfallen-System durchgeführt. Dort wurden im Rahmen dieser Arbeit auch erstmals hochgeladene Ionen bis 28Si13+ in einer hierfür entwickelten Elektronenstrahl-Ionenquelle/-falle erzeugt. Für die Bestimmung des g-Faktors werden die freie Zyklotronfrequenz und die Larmorfrequenz benötigt. Erstere wird aus den drei Eigenfrequenzen des in der Präzisionsfalle gespeicherten Ions berechnet. Um das Ion bei den Messungen nicht zu verlieren, werden die Eigenfrequenzen des Ions durch Kopplung an einen radiofrequenten Nachweisschwingkreis nicht-destruktiv nachgewiesen. Die freie Zyklotronfrequenz konnte dabei mit einer relativen Genauigkeit von wenigen 10E−9 bestimmt werden. Zur Bestimmung der Larmorfrequenz ist die genaue Kenntnis der Spinrichtung des Elektrons im Magnetfeld notwendig. Diese wird durch den kontinuierlichen Stern-Gerlach-Effekt in der sogenannten Analysefalle bestimmt. Hierzu muss eine hohe Stabilität der axialen Frequenz des Ions erreicht werden. Um dies sowie die Hochpräzisionsmessungen in der Präzisionsfalle zu erreichen, wurden in dieser Arbeit beide Fallen hinsichtlich ihrer elektrischen und magnetischen Eigenschaften charakterisiert.
Resumo:
Ion traps have been established as a powerful tool for ion cooling and laser spectroscopy experiments since a long time ago. SpecTrap, one of the precision experiments associated to the HITRAP facility at GSI, is implementing a Penning trap for studies of large bunches of externally produced highly charged ions. The extremely strong electric and magnetic fields that exist around the nuclei of heavy elements drastically change their electronic properties, such as energy level spacings and radiative lifetimes. The electrons can therefore serve as sensitive probes for nuclear properties such as size, magnetic moment and spatial distribution of charge and magnetization. The energies of forbidden fine and hyperfine structure transitions in such ions strongly depend on the nuclear charge and shift from the microwave domain into the optical domain. Thus, they become accessible for laser spectroscopy and its potentially high accuracy. A number of such measurements has been performed in storage rings and electron beam ion traps and yielded results with relative accuracies in the 10
Resumo:
The numerical solution of the time dependent wave equation in an unbounded domain generally leads to a truncation of this domain, which requires the introduction of an artificial boundary with associated boundary conditions. Such nonreflecting conditions ensure the equivalence between the solution of the original problem in the unbounded region and the solution inside the artificial boundary. We consider the acoustic wave equation and derive exact transparent boundary conditions that are local in time and can be directly used in explicit methods. These conditions annihilate wave harmonics up to a given order on a spherical artificial boundary, and we show how to combine the derived boundary condition with a finite difference method. The analysis is complemented by a numerical example in two spatial dimensions that illustrates the usefulness and accuracy of transparent boundary conditions.