922 resultados para multi-column process
Resumo:
Within Data Envelopment Analysis, several alternative models allow for an environmental adjustment. The majority of them deliver divergent results. Decision makers face the difficult task of selecting the most suitable model. This study is performed to overcome this difficulty. By doing so, it fills a research gap. First, a two-step web-based survey is conducted. It aims (1) to identify the selection criteria, (2) to prioritize and weight the selection criteria with respect to the goal of selecting the most suitable model and (3) to collect the preferences about which model is preferable to fulfil each selection criterion. Second, Analytic Hierarchy Process is used to quantify the preferences expressed in the survey. Results show that the understandability, the applicability and the acceptability of the alternative models are valid selection criteria. The selection of the most suitable model depends on the preferences of the decision makers with regards to these criteria.
Resumo:
The abandonment of agricultural land in mountainous areas has been an outstanding problem along the last century and has captured the attention of scientists, technicians and administrations, for the dramatic consequences sometimes occurred due to soil instability, steep slopes, rainfall regimes and wildfires. Hidromorfological and pedological alterations causing exceptional floods and accelerated erosion processes has therefore been studied, identifying the cause in the loss of landscape heterogeneity. Through the disappearance of agricultural works and drainage maintenance, slope stability has resulted severely affected. The mechanization of agriculture has caused the displacement of vines, olives and corks trees cultivation in terraced areas along the Mediterranean catchment towards more economically suitable areas. On the one hand, land use and management changes have implicated sociological changes as well, transforming areas inhabited by agricultural communities into deserted areas where the colonization of disorganized spontaneous vegetation has buried a valuable rural patrimony. On the other hand, lacking of planning and management of the abandoned areas has produced badlands and infertile soils due to wildfire and high erosion rates strongly degrading the whole ecosystems. In other cases, after land abandonment a process of soil regeneration has been recorded. Investigations have been conducted in a part of NE Spain where extended areas of terraced soils previously cultivated have been abandoned in the last century. The selected environments were semi-abandoned vineyards, semi-abandoned olive groves, abandoned stands of cork trees, abandoned stands of pine trees, scrubland of Cistaceaea, scrubland of Ericaceaea, and pasture. The research work was focused on the study of most relevant physical, chemical and biological soil properties, as well as runoff and erosion under soils with different plant cover to establish the abandonment effect on soil quality, due to the peculiarity and vulnerability of these soils with a much reduced depth. The period of observation was carried out from autumn 2009 to autumn 2010. The sediment concentration of soil erosion under vines was recorded as 34.52 g/l while under pasture it was 4.66 g/l. In addition, the soil under vines showed the least amount of organic matter, which was 12 times lower than all other soil environments. The carbon dioxide (CO2) and total glomalin (TG) ratio to soil organic carbon (SOC) in this soil was 0.11 and 0.31 respectively. However, the soil under pasture contained a higher amount of organic matter and showed that the CO2 and TG ratio to SOC was 0.02 and 0.11 respectively indicating that the soil under pasture better preserves the soil carbon pool. A similar trend was found in the intermediate soils in the sequence of land use change and abandonment. Soil structural stability increased in the two soil fractions investigated (0.25-2.00 mm, 2.0-5.6 mm) especially in those soils that did not undergo periodical perturbations like wildfires. Soil quality indexes were obtained by using relevant physical and chemical soil parameters. Factor analysis carried out to study the relationship between all soil parameters allowed to related variables and environments and identify those areas that better contribute to soil quality towards others that may need more attention to avoid further degradation processes
Resumo:
Research question: International and national sport federations as well as their member organisations are key actors within the sport system and have a wide range of relationships outside the sport system (e.g. with the state, sponsors, and the media). They are currently facing major challenges such as growing competition in top-level sports, democratisation of sports with 'sports for all' and sports as the answer to social problems. In this context, professionalising sport organisations seems to be an appropriate strategy to face these challenges and current problems. We define the professionalisation of sport organisations as an organisational process of transformation leading towards organisational rationalisation, efficiency and business-like management. This has led to a profound organisational change, particularly within sport federations, characterised by the strengthening of institutional management (managerialism) and the implementation of efficiency-based management instruments and paid staff. Research methods: The goal of this article is to review the current international literature and establish a global understanding of and theoretical framework for analysing why and how sport organisations professionalise and what consequences this may have. Results and findings: Our multi-level approach based on the social theory of action integrates the current concepts for analysing professionalisation in sport federations. We specify the framework for the following research perspectives: (1) forms, (2) causes and (3) consequences, and discuss the reciprocal relations between sport federations and their member organisations in this context. Implications: Finally, we work out a research agenda and derive general methodological consequences for the investigation of professionalisation processes in sport organisations.
Resumo:
This study extends the standard econometric treatment of appellate court outcomes by 1) considering the role of decision-maker effort and case complexity, and 2) adopting a multi-categorical selection process of appealed cases. We find evidence of appellate courts being affected by both the effort made by first-stage decision makers and case complexity. This illustrates the value of widening the narrowly defined focus on heterogeneity in individual-specific preferences that characterises many applied studies on legal decision-making. Further, the majority of appealed cases represent non-random sub-samples and the multi-categorical selection process appears to offer advantages over the more commonly used dichotomous selection models.
Resumo:
The multi-element determination of Al, Cr, Mn, Ni, Cu, Zn, Cd, Ba, Pb, SO4= and Cl- in riverine water samples was accomplished by inductively coupled plasma mass spectrometry (ICP-MS). The sample passed through a column containing the anionic resin AG1-X8 and the metals were determined directly. The retained anionic species were eluted and SO4= and Cl- were determined at m/z 48 and 35 correspondent to the ions SO+ and Cl+ formed at the plasma. Accuracy for metals was assessed by analysing the certified reference TM-26 (National Water Research Institute of Canada). Results for SO4= and Cl- were in agreement with those obtained by turbidimetry and spectrophotometry. LOD's of 0.1 µg l-1 for Cd, Ba and Pb; 0.2 µg l-1 for Al, Mn and Cu; 0.5 µg l-1 for Cr; 0.9 for Zn; 2.0 µg l-1for Ni , 60 µg l-1 for S and 200 µg l-1 Cl were attained.
Resumo:
The literature part of the work reviews overall Fischer-Tropsch process, Fischer-Tropsch reactors and catalysts. Fundamentals of Fischer-Tropsch modeling are also presented. The emphasis is on the reactor unit. Comparison of the reactors and the catalysts is carried out to choose the suitable reactor setup for the modeling work. The effects of the operation conditions are also investigated. Slurry bubble column reactor model operating with cobalt catalyst is developed by taking into account the mass transfer of the reacting components (CO and H2) and the consumption of the reactants in the liquid phase. The effect of hydrostatic pressure and the change in total mole flow rate in gas phase are taken into account in calculation of the solubilities. The hydrodynamics, reaction kinetics and product composition are determined according to literature. The cooling system and furthermore the required heat transfer area and number of cooling tubes are also determined. The model is implemented in Matlab software. Commercial scale reactor setup is modeled and the behavior of the model is investigated. The possible inaccuraries are evaluated and the suggestions for the future work are presented. The model is also integrated to Aspen Plus process simulation software, which enables the usage of the model in more extensive Fischer-Tropsch process simulations. Commercial scale reactor of diameter of 7 m and height of 30 m was modeled. The capacity of the reactor was calculated to be about 9 800 barrels/day with CO conversion of 75 %. The behavior of the model was realistic and results were in the right range. The highest uncertainty to model was estimated to be caused by the determination of the kinetic rate.
Resumo:
Robotic platforms have advanced greatly in terms of their remote sensing capabilities, including obtaining optical information using cameras. Alongside these advances, visual mapping has become a very active research area, which facilitates the mapping of areas inaccessible to humans. This requires the efficient processing of data to increase the final mosaic quality and computational efficiency. In this paper, we propose an efficient image mosaicing algorithm for large area visual mapping in underwater environments using multiple underwater robots. Our method identifies overlapping image pairs in the trajectories carried out by the different robots during the topology estimation process, being this a cornerstone for efficiently mapping large areas of the seafloor. We present comparative results based on challenging real underwater datasets, which simulated multi-robot mapping
Resumo:
Notwithstanding the functional role that the aggregates of some amyloidogenic proteins can play in different organisms, protein aggregation plays a pivotal role in the pathogenesis of a large number of human diseases. One of such diseases is Alzheimer"s disease (AD), where the overproduction and aggregation of the β-amyloid peptide (Aβ) are regarded as early critical factors. Another protein that seems to occupy a prominent position within the complex pathological network of AD is the enzyme acetylcholinesterase (AChE), with classical and non-classical activities involved at the late (cholinergic deficit) and early (Aβ aggregation) phases of the disease. Dual inhibitors of Aβ aggregation and AChE are thus emerging as promising multi-target agents with potential to efficiently modify the natural course of AD. In the initial phases of the drug discovery process of such compounds, in vitro evaluation of the inhibition of Aβ aggregation is rather troublesome, as it is very sensitive to experimental assay conditions, and requires expensive synthetic Aβ peptides, which makes cost-prohibitive the screening of large compound libraries. Herein, we review recently developed multi-target anti-Alzheimer compounds that exhibit both Aβ aggregation and AChE inhibitory activities, and, in some cases also additional valuable activities such as BACE-1 inhibition or antioxidant properties. We also discuss the development of simplified in vivo methods for the rapid, simple, reliable, unexpensive, and high-throughput amenable screening of Aβ aggregation inhibitors that rely on the overexpression of Aβ42 alone or fused with reporter proteins in Escherichia coli.
Resumo:
Aim of this thesis was to design and manufacture a microdistillation column. The literature review part of this thesis covers stainless steels, material processing and basics about engineering design and distillation. The main focus, however, is on the experimental part. Experimental part is divided into five distinct sections: First part is where the device is introduced and separated into three parts. Secondly the device is designed part by part. It consists mostly of detail problem solving, since the first drawings had already been drawn and the critical dimensions decided. Third part is the manufacture, which was not fully completed since the final assembly was left out of this thesis. Fourth part is the test welding for the device, and its analysis. Finally some ideas for further studies are presented. The main goal of this thesis was accomplished. The device only lacks some final assembly but otherwise it is complete. One thing that became clear during the process was how difficult it is to produce small and precise steel parts with conventional manufacturing methods. Internal stresses within steel plates and thermal distortions can easily ruin small steel structures. Designing appropriate welding jigs is an important task for even simple devices. Laser material processing is a promising tool for this kind of steel processing because of the flexibility, good cutting quality and also precise and low heat input when welding. Next step in this project is the final assembly and the actual distillation tests. The tests will be carried out at Helsinki University of Technology.
Resumo:
The overriding aim of this drama educational case study is to deepen the understanding of meaning making in a creative intercultural youth theatre process and to examine it in the context of the 10th European Children's TheatreEncounter. The research task is to give a theoretical description of some key features of a creative drama process as the basis for theory about meaning makingin physical theatre. The first task is to illuminate the culture-historical connections of the multilayered practice of the EDERED-association. The second taskis to analyse and interpret theatrical meaning making. The ethnographical research site is regarded as a theatrical event. The analysis of the theatrical eventis divided into four segments: cultural contexts, contextual theatricality, theatrical playing and playing culture. These segments are connected with four research questions: What are the cultural contexts of a creative drama process? How can the organisation of the Encounter, genres, aesthetic codes and perception ofcodes be seen to influence the lived experiences of the participants? What are some of the key phases and characteristics in a creative practice? What kind of cultural learning can be interpreted from the performance texts? The interpretative question concerns identity and community (re)construction. How are the categories, `community´ and `child´ constructed in the Encounter culture? In this drama educational case study the research material (transcribed interviews, coded questionnaire answers, participant drawings, videotaped process text and performance texts) are examined in a multi-method analysis in the meta-theoretical framework of Dewey's naturalistic pragmatism. A three-dimensional research interest through a combination of lived experiences, social contexts and cultural-aesthetical practices compared with drama-educational practices required the methodological project of cultural studies. Furthermore, the critical interpretation of cultural texts is divided into three levels of analyses which are called description, structural analysis and theoretical interpretation. Dialogic validity (truthfulness, self-reflexivity and polyvocality) is combined with contextual validity (sensitivity to social context and awareness of historicity) and with deconstructive validity (awareness of the social discourses). My research suggests that itis possible, by means of physical theatre, to construct symbolic worlds where questions about intercultural identity and multilingual community are examined and where provisional answers are constructed in social interaction.
Resumo:
The objective of this thesis work is to develop and study the Differential Evolution Algorithm for multi-objective optimization with constraints. Differential Evolution is an evolutionary algorithm that has gained in popularity because of its simplicity and good observed performance. Multi-objective evolutionary algorithms have become popular since they are able to produce a set of compromise solutions during the search process to approximate the Pareto-optimal front. The starting point for this thesis was an idea how Differential Evolution, with simple changes, could be extended for optimization with multiple constraints and objectives. This approach is implemented, experimentally studied, and further developed in the work. Development and study concentrates on the multi-objective optimization aspect. The main outcomes of the work are versions of a method called Generalized Differential Evolution. The versions aim to improve the performance of the method in multi-objective optimization. A diversity preservation technique that is effective and efficient compared to previous diversity preservation techniques is developed. The thesis also studies the influence of control parameters of Differential Evolution in multi-objective optimization. Proposals for initial control parameter value selection are given. Overall, the work contributes to the diversity preservation of solutions in multi-objective optimization.
Resumo:
Fraud is an increasing phenomenon as shown in many surveys carried out by leading international consulting companies in the last years. Despite the evolution of electronic payments and hacking techniques there is still a strong human component in fraud schemes. Conflict of interest in particular is the main contributing factor to the success of internal fraud. In such cases anomaly detection tools are not always the best instruments, since the fraud schemes are based on faking documents in a context dominated by lack of controls, and the perpetrators are those ones who should control possible irregularities. In the banking sector audit team experts can count only on their experience, whistle blowing and the reports sent by their inspectors. The Fraud Interactive Decision Expert System (FIDES), which is the core of this research, is a multi-agent system built to support auditors in evaluating suspicious behaviours and to speed up the evaluation process in order to detect or prevent fraud schemes. The system combines Think-map, Delphi method and Attack trees and it has been built around audit team experts and their needs. The output of FIDES is an attack tree, a tree-based diagram to ”systematically categorize the different ways in which a system can be attacked”. Once the attack tree is built, auditors can choose the path they perceive as more suitable and decide whether or not to start the investigation. The system is meant for use in the future to retrieve old cases in order to match them with new ones and find similarities. The retrieving features of the system will be useful to simplify the risk management phase, since similar countermeasures adopted for past cases might be useful for present ones. Even though FIDES has been built with the banking sector in mind, it can be applied in all those organisations, like insurance companies or public organizations, where anti-fraud activity is based on a central anti-fraud unit and a reporting system.
Resumo:
Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.
Resumo:
Although the concept of multi-products biorefinery provides an opportunity to meet the future demands for biofuels, biomaterials or chemicals, it is not assured that its implementation would improve the profitability of kraft pulp mills. The attractiveness will depend on several factors such as mill age and location, government incentives, economy of scale, end user requirements, and how much value can be added to the new products. In addition, the effective integration of alternative technologies is not straightforward and has to be carefully studied. In this work, detailed balances were performed to evaluate possible impacts that lignin removal, hemicelluloses recovery prior to pulping, torrefaction and pyrolysis of wood residues cause on the conventional mill operation. The development of mill balances was based on theoretical fundamentals, practical experience, literature review, personal communication with technology suppliers and analysis of mill process data. Hemicelluloses recovery through pre-hydrolysis of chips leads to impacts in several stages of the kraft process. Effects can be observed on the pulping process, wood consumption, black liquor properties and, inevitably, on the pulp quality. When lignin is removed from black liquor, it will affect mostly the chemical recovery operation and steam generation rate. Since mineral acid is used to precipitate the lignin, impacts on the mill chemical balance are also expected. A great advantage of processing the wood residues for additional income results from the fact that the pulping process, pulp quality and sales are not harmfully affected. For pulp mills interested in implementing the concept of multi-products biorefinery, this work has indicated possible impacts to be considered in a technical feasibility study.
Resumo:
Asymmetric synthesis using modified heterogeneous catalysts has gained lots of interest in the production of optically pure chemicals, such as pharmaceuticals, nutraceuticals, fragrances and agrochemicals. Heterogeneous modified catalysts capable of inducing high enantioselectivities are preferred in industrial scale due to their superior separation and handling properties. The topic has been intensively investigated both in industry and academia. The enantioselective hydrogenation of ethyl benzoylformate (EBF) to (R)-ethyl mandelate over (-)-cinchonidine (CD)-modified Pt/Al2O3 catalyst in a laboratory-scale semi-batch reactor was studied as a function of modifier concentration, reaction temperature, stirring rate and catalyst particle size. The main product was always (R)-ethyl mandelate while small amounts of (S)-ethyl mandelate were obtained as by product. The kinetic results showed higher enantioselectivity and lower initial rates approaching asymptotically to a constant value as the amount of modifier was increased. Additionally, catalyst deactivation due to presence of impurities in the feed was prominent in some cases; therefore activated carbon was used as a cleaning agent of the raw material to remove impurities prior to catalyst addition. Detailed characterizations methods (SEM, EDX, TPR, BET, chemisorption, particle size distribution) of the catalysts were carried out. Solvent effects were also studied in the semi-batch reactor. Solvents with dielectric constant (e) between 2 and 25 were applied. The enantiomeric excess (ee) increased with an increase of the dielectric coefficient up to a maximum followed by a nonlinear decrease. A kinetic model was proposed for the enantioselectivity dependence on the dielectric constant based on the Kirkwood treatment. The non-linear dependence of ee on (e) successfully described the variation of ee in different solvents. Systematic kinetic experiments were carried out in the semi-batch reactor. Toluene was used as a solvent. Based on these results, a kinetic model based on the assumption of different number of sites was developed. Density functional theory calculations were applied to study the energetics of the EBF adsorption on pure Pt(1 1 1). The hydrogenation rate constants were determined along with the adsorption parameters by non-linear regression analysis. A comparison between the model and the experimental data revealed a very good correspondence. Transient experiments in a fixed-bed reactor were also carried out in this work. The results demonstrated that continuous enantioselective hydrogenation of EBF in hexane/2-propanol 90/10 (v/v) is possible and that continuous feeding of (-)-cinchonidine is needed to maintain a high steady-state enantioselectivity. The catalyst showed a good stability and high enantioselectivity was achieved in the fixed-bed reactor. Chromatographic separation of (R)- and (S)-ethyl mandelate originating from the continuous reactor was investigated. A commercial column filled with a chiral resin was chosen as a perspective preparative-scale adsorbent. Since the adsorption equilibrium isotherms were linear within the entire investigated range of concentrations, they were determined by pulse experiments for the isomers present in a post-reaction mixture. Breakthrough curves were measured and described successfully by the dispersive plug flow model with a linear driving force approximation. The focus of this research project was the development of a new integrated production concept of optically active chemicals by combining heterogeneous catalysis and chromatographic separation technology. The proposed work is fundamental research in advanced process technology aiming to improve efficiency and enable clean and environmentally benign production of enantiomeric pure chemicals.