969 resultados para moving object classification
Resumo:
We present a molecular phylogenetic analysis of caenophidian (advanced) snakes using sequences from two mitochondrial genes (12S and 16S rRNA) and one nuclear (c-mos) gene (1681 total base pairs), and with 131 terminal taxa sampled from throughout all major caenophidian lineages but focussing on Neotropical xenodontines. Direct optimization parsimony analysis resulted in a well-resolved phylogenetic tree, which corroborates some clades identified in previous analyses and suggests new hypotheses for the composition and relationships of others. The major salient points of our analysis are: (1) placement of Acrochordus, Xenodermatids, and Pareatids as successive outgroups to all remaining caenophidians (including viperids, elapids, atractaspidids, and all other "colubrid" groups); (2) within the latter group, viperids and homalopsids are sucessive sister clades to all remaining snakes; (3) the following monophyletic clades within crown group caenophidians: Afro-Asian psammophiids (including Mimophis from Madagascar), Elapidae (including hydrophiines but excluding Homoroselaps), Pseudoxyrhophiinae, Colubrinae, Natricinae, Dipsadinae, and Xenodontinae. Homoroselaps is associated with atractaspidids. Our analysis suggests some taxonomic changes within xenodontines, including new taxonomy for Alsophis elegans, Liophis amarali, and further taxonomic changes within Xenodontini and the West Indian radiation of xenodontines. Based on our molecular analysis, we present a revised classification for caenophidians and provide morphological diagnoses for many of the included clades; we also highlight groups where much more work is needed. We name as new two higher taxonomic clades within Caenophidia, one new subfamily within Dipsadidae, and, within Xenodontinae five new tribes, six new genera and two resurrected genera. We synonymize Xenoxybelis and Pseudablabes with Philodryas; Erythrolamprus with Liophis; and Lystrophis and Waglerophis with Xenodon.
Resumo:
This paper describes a new food classification which assigns foodstuffs according to the extent and purpose of the industrial processing applied to them. Three main groups are defined: unprocessed or minimally processed foods (group 1), processed culinary and food industry ingredients (group 2), and ultra-processed food products (group 3). The use of this classification is illustrated by applying it to data collected in the Brazilian Household Budget Survey which was conducted in 2002/2003 through a probabilistic sample of 48,470 Brazilian households. The average daily food availability was 1,792 kcal/person being 42.5% from group 1 (mostly rice and beans and meat and milk), 37.5% from group 2 (mostly vegetable oils, sugar, and flours), and 20% from group 3 (mostly breads, biscuits, sweets, soft drinks, and sausages). The share of group 3 foods increased with income, and represented almost one third of all calories in higher income households. The impact of the replacement of group 1 foods and group 2 ingredients by group 3 products on the overall quality of the diet, eating patterns and health is discussed.
Resumo:
This work proposes a new approach using a committee machine of artificial neural networks to classify masses found in mammograms as benign or malignant. Three shape factors, three edge-sharpness measures, and 14 texture measures are used for the classification of 20 regions of interest (ROIs) related to malignant tumors and 37 ROIs related to benign masses. A group of multilayer perceptrons (MLPs) is employed as a committee machine of neural network classifiers. The classification results are reached by combining the responses of the individual classifiers. Experiments involving changes in the learning algorithm of the committee machine are conducted. The classification accuracy is evaluated using the area A. under the receiver operating characteristics (ROC) curve. The A, result for the committee machine is compared with the A, results obtained using MLPs and single-layer perceptrons (SLPs), as well as a linear discriminant analysis (LDA) classifier Tests are carried out using the student's t-distribution. The committee machine classifier outperforms the MLP SLP, and LDA classifiers in the following cases: with the shape measure of spiculation index, the A, values of the four methods are, in order 0.93, 0.84, 0.75, and 0.76; and with the edge-sharpness measure of acutance, the values are 0.79, 0.70, 0.69, and 0.74. Although the features with which improvement is obtained with the committee machines are not the same as those that provided the maximal value of A(z) (A(z) = 0.99 with some shape features, with or without the committee machine), they correspond to features that are not critically dependent on the accuracy of the boundaries of the masses, which is an important result. (c) 2008 SPIE and IS&T.
Resumo:
Context. The subject of asteroids in cometary orbits (ACOs) has been of growing interest lately. These objects have the orbital characteristics typical of comets, but are asteroidal in appearance, i.e., show no signs of a coma at any part of their orbits. At least a fraction of these objects are thought to be comets that have either exhausted all their volatile content or developed a refractory crust that prevents sublimation. In particular, the asteroid ( 5201) Ferraz-Mello has, since its discovery, been suspected to be an extinct Jupiter family comet due to the peculiar nature of its orbit. Aims. The aim of this work is to put constraints on the possible origin of ( 5201) Ferraz-Mello by means of spectroscopic characterization and a study of the dynamics of this asteroid. Methods. We used the SOAR Optical Imager (SOI) to obtain observations of ( 5201) Ferraz-Mello using four SDSS filters. These observations were compared to asteroids listed in the Sloan Moving objects catalog and also to photometry of cometary nuclei, Centaurs, and TNOs. The orbital evolution of ( 5201) Ferraz-Mello and of a sample of asteroids and comets that are close to that object in the a - e plane were simulated using a pure N-body code for 4 000 years forward and 4 000 years backward in time. Results. The reflectance spectrum obtained from its colors in the SDSS system is unusual, with a steep spectral gradient that is comparable to TNOs and Centaurs, but with an increase in the reflectance in the g band that is not common in those populations. A similar behavior is seen in cometary nuclei that were observed in the presence of a faint dust coma. The dynamical results confirm the very chaotic evolution found previously and its dynamical similarity to the chaotic evolution of some comets. The asteroid is situated in the very stochastic layer at the border of the 2/1 resonance, and it has a very short Lyapunov time ( 30 - 40) years. Together, the spectral characteristcs and the dynamical evolution suggest that ( 5201) Ferraz-Mello is a dormant or extinct comet.
Resumo:
We report the discovery of a tight substellar companion to the young solar analog PZ Tel, a member of the beta Pic moving group observed with high-contrast adaptive optics imaging as part of the Gemini Near-Infrared Coronagraphic Imager Planet-Finding Campaign. The companion was detected at a projected separation of 16.4 +/- 1.0 AU (0.'' 33 +/- 0.'' 01) in 2009 April. Second-epoch observations in 2010 May demonstrate that the companion is physically associated and shows significant orbital motion. Monte Carlo modeling constrains the orbit of PZ Tel B to eccentricities >0.6. The near-IR colors of PZ Tel B indicate a spectral type of M7 +/- 2 and thus this object will be a new benchmark companion for studies of ultracool, low-gravity photospheres. Adopting an age of 12(-4)(+8) Myr for the system, we estimate a mass of 36 +/- 6 M(Jup) based on the Lyon/DUSTY evolutionary models. PZ Tel B is one of the few young substellar companions directly imaged at orbital separations similar to those of giant planets in our own solar system. Additionally, the primary star PZ Tel A shows a 70 mu m emission excess, evidence for a significant quantity of circumstellar dust that has not been disrupted by the orbital motion of the companion.
Resumo:
Aims. In this work, we describe the pipeline for the fast supervised classification of light curves observed by the CoRoT exoplanet CCDs. We present the classification results obtained for the first four measured fields, which represent a one-year in-orbit operation. Methods. The basis of the adopted supervised classification methodology has been described in detail in a previous paper, as is its application to the OGLE database. Here, we present the modifications of the algorithms and of the training set to optimize the performance when applied to the CoRoT data. Results. Classification results are presented for the observed fields IRa01, SRc01, LRc01, and LRa01 of the CoRoT mission. Statistics on the number of variables and the number of objects per class are given and typical light curves of high-probability candidates are shown. We also report on new stellar variability types discovered in the CoRoT data. The full classification results are publicly available.
Resumo:
Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov-Smirnov-type goodness-of-fit test proposed by Balding et at. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford-Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton-Watson related processes.
Resumo:
The problem of semialgebraic Lipschitz classification of quasihomogeneous polynomials on a Holder triangle is studied. For this problem, the ""moduli"" are described completely in certain combinatorial terms.
Resumo:
Quality control of toys for avoiding children exposure to potentially toxic elements is of utmost relevance and it is a common requirement in national and/or international norms for health and safety reasons. Laser-induced breakdown spectroscopy (LIBS) was recently evaluated at authors` laboratory for direct analysis of plastic toys and one of the main difficulties for the determination of Cd. Cr and Pb was the variety of mixtures and types of polymers. As most norms rely on migration (lixiviation) protocols, chemometric classification models from LIBS spectra were tested for sampling toys that present potential risk of Cd, Cr and Pb contamination. The classification models were generated from the emission spectra of 51 polymeric toys and by using Partial Least Squares - Discriminant Analysis (PLS-DA), Soft Independent Modeling of Class Analogy (SIMCA) and K-Nearest Neighbor (KNN). The classification models and validations were carried out with 40 and 11 test samples, respectively. Best results were obtained when KNN was used, with corrected predictions varying from 95% for Cd to 100% for Cr and Pb. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Traditionally, chronotype classification is based on the Morningness-Eveningness Questionnaire (MEQ). It is implicit in the classification that intermediate individuals get intermediate scores to most of the MEQ questions. However, a small group of individuals has a different pattern of answers. In some questions, they answer as ""morning-types"" and in some others they answer as ""evening-types,"" resulting in an intermediate total score. ""Evening-type"" and ""Morning-type"" answers were set as A(1) and A(4), respectively. Intermediate answers were set as A(2) and A(3). The following algorithm was applied: Bimodality Index = (Sigma A(1) x Sigma A(4))(2) - (Sigma A(2) x Sigma A(3))(2). Neither-types that had positive bimodality scores were classified as bimodal. If our hypothesis is validated by objective data, an update of chronotype classification will be required. (Author correspondence: brunojm@ymail.com)
Resumo:
This text aims to approach museums` role in the production of knowledge and how objects are transformed into documents when museums incorporate them. On accepting the effects of such transformation, museums start working not only with material goods, but also symbolic goods. The collection manager or exhibition curator communicate through documents rather than bringing into light its intrinsic content. In this sense, every process involving museum documents, from the selection of collections to exhibitions, has a rhetoric and ideological nature which is given. Museums must search for meanings through correlations established in the process of producing information. Exhibitions should present objects in multiple contexts, giving visitors the opportunity to participate and attribute their own meanings to them.
Resumo:
This investigation aimed at assessing the extent to which memory from practice in a specific condition of target displacement modulates temporal errors and movement timing of interceptive movements. We compared two groups practicing with certainty of future target velocity either in unchanged target velocity or in target velocity decrease. Following practice, both experimental groups were probed in the situations of unchanged target velocity and target velocity decrease either under the context of certainty or uncertainty about target velocity. Results from practice showed similar improvement of temporal accuracy between groups, revealing that target velocity decrease did not disturb temporal movement organization when fully predictable. Analysis of temporal errors in the probing trials indicated that both groups had higher timing accuracy in velocity decrease in comparison with unchanged velocity. Effect of practice was detected by increased temporal accuracy of the velocity decrease group in situations of decreased velocity; a trend consistent with the expected effect of practice was observed for temporal errors in the unchanged velocity group and in movement initiation at a descriptive level. An additional point of theoretical interest was the fast adaptation in both groups to a target velocity pattern different from that practiced. These points are discussed under the perspective of integration of vision and motor control by means of an internal forward model of external motion.
Resumo:
Use of peripheral vision to organize and reorganize an interceptive action was investigated in young adults. Temporal errors and kinematic variables were evaluated in the interception of a virtual moving target, in situations in which its initial velocity was kept unchanged or was unexpectedly decreased. Observation of target approach was made through continuous visual pursuit (focal vision) or keeping visual focus at the origin of the trajectory or at the contact spot (peripheral vision). Results showed that visual focus at the contact spot led to temporal errors similar to focal vision, although showing a distinct kinematic profile, while focus at the origin led to an impoverished performance
Resumo:
This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. This work proposes to recover these different kinds of information to interpret the global motion of the human body based on four different segmented image models, using a fusion model to improve classification. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette-Edge-Binary model (SEW) captures motion based on edge information and the Silhouette Skeleton Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.