976 resultados para mixed-integer programming
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Em Angola, apenas cerca de 30% da população tem acesso à energia elétrica, nível que decresce para valores inferiores a 10% em zonas rurais mais remotas. Este problema é agravado pelo facto de, na maioria dos casos, as infraestruturas existentes se encontrarem danificadas ou não acompanharem o desenvolvimento da região. Em particular na capital angolana, Luanda que, sendo a menor província de Angola, é a que regista atualmente a maior densidade populacional. Com uma população de cerca de 5 milhões de habitantes, não só há frequentemente problemas relacionados com a falha do fornecimento de energia elétrica como há ainda uma percentagem considerável de municípios onde a rede elétrica ainda nem sequer chegou. O governo de Angola, no seu esforço de crescimento e aproveitamento das suas enormes potencialidades, definiu o setor energético como um dos fatores críticos para o desenvolvimento sustentável do país, tendo assumido que este é um dos eixos prioritários até 2016. Existem objetivos claros quanto à reabilitação e expansão das infraestruturas do setor elétrico, aumentando a capacidade instalada do país e criando uma rede nacional adequada, com o intuito não só de melhorar a qualidade e fiabilidade da rede já existente como de a aumentar. Este trabalho de dissertação consistiu no levantamento de dados reais relativamente à rede de distribuição de energia elétrica de Luanda, na análise e planeamento do que é mais premente fazer relativamente à sua expansão, na escolha dos locais onde é viável localizar novas subestações, na modelação adequada do problema real e na proposta de uma solução ótima para a expansão da rede existente. Depois de analisados diferentes modelos matemáticos aplicados ao problema de expansão de redes de distribuição de energia elétrica encontrados na literatura, optou-se por um modelo de programação linear inteira mista (PLIM) que se mostrou adequado. Desenvolvido o modelo do problema, o mesmo foi resolvido por recurso a software de otimização Analytic Solver e CPLEX. Como forma de validação dos resultados obtidos, foi implementada a solução de rede no simulador PowerWorld 8.0 OPF, software este que permite a simulação da operação do sistema de trânsito de potências.
Resumo:
A sustentabilidade do sistema energético é crucial para o desenvolvimento económico e social das sociedades presentes e futuras. Para garantir o bom funcionamento dos sistemas de energia actua-se, tipicamente, sobre a produção e sobre as redes de transporte e de distribuição. No entanto, a integração crescente de produção distribuída, principalmente nas redes de distribuição de média e de baixa tensão, a liberalização dos mercados energéticos, o desenvolvimento de mecanismos de armazenamento de energia, o desenvolvimento de sistemas automatizados de controlo de cargas e os avanços tecnológicos das infra-estruturas de comunicação impõem o desenvolvimento de novos métodos de gestão e controlo dos sistemas de energia. O contributo deste trabalho é o desenvolvimento de uma metodologia de gestão de recursos energéticos num contexto de SmartGrids, considerando uma entidade designada por VPP que gere um conjunto de instalações (unidades produtoras, consumidores e unidades de armazenamento) e, em alguns casos, tem ao seu cuidado a gestão de uma parte da rede eléctrica. Os métodos desenvolvidos contemplam a penetração intensiva de produção distribuída, o aparecimento de programas de Demand Response e o desenvolvimento de novos sistemas de armazenamento. São ainda propostos níveis de controlo e de tomada de decisão hierarquizados e geridos por entidades que actuem num ambiente de cooperação mas também de concorrência entre si. A metodologia proposta foi desenvolvida recorrendo a técnicas determinísticas, nomeadamente, à programação não linear inteira mista, tendo sido consideradas três funções objectivo distintas (custos mínimos, emissões mínimas e cortes de carga mínimos), originando, posteriormente, uma função objectivo global, o que permitiu determinar os óptimos de Pareto. São ainda determinados os valores dos custos marginais locais em cada barramento e consideradas as incertezas dos dados de entrada, nomeadamente, produção e consumo. Assim, o VPP tem ao seu dispor um conjunto de soluções que lhe permitirão tomar decisões mais fundamentadas e de acordo com o seu perfil de actuação. São apresentados dois casos de estudo. O primeiro utiliza uma rede de distribuição de 32 barramentos publicada por Baran & Wu. O segundo caso de estudo utiliza uma rede de distribuição de 114 barramentos adaptada da rede de 123 barramentos do IEEE.
Resumo:
O planeamento de redes de distribuição tem como objetivo assegurar a existência de capacidade nas redes para a fornecimento de energia elétrica com bons níveis de qualidade de serviço tendo em conta os fatores económicos associados. No âmbito do trabalho apresentado na presente dissertação, foi elaborado um modelo de planeamento que determina a configuração de rede resultante da minimização de custos associados a: 1) perdas por efeito de joule; 2) investimento em novos componentes; 3) energia não entregue. A incerteza associada ao valor do consumo de cada carga é modelada através de lógica difusa. O problema de otimização definido é resolvido pelo método de decomposição de benders que contempla dois trânsitos de potências ótimos (modelo DC e modelo AC) no problema mestre e escravo respectivamente para validação de restrições. Foram também definidos critérios de paragem do método de decomposição de benders. O modelo proposto classifica-se como programação não linear inteira mista e foi implementado na ferramenta de otimização General Algebraic Modeling System (GAMS). O modelo desenvolvido tem em conta todos componentes das redes para a otimização do planeamento, conforme podemos analisar nos casos de estudo implementados. Cada caso de estudo é definido pela variação da importância que cada uma das variáveis do problema toma, tendo em vista cobrir de alguma todos os cenários de operação expetáveis. Através destes casos de estudo verifica-se as várias configurações que a rede pode tomar, tendo em conta as importâncias atribuídas a cada uma das variáveis, bem como os respetivos custos associados a cada solução. Este trabalho oferece um considerável contributo no âmbito do planeamento de redes de distribuição, pois comporta diferentes variáveis para a execução do mesmo. É também um modelo bastante robusto não perdendo o ‘norte’ no encontro de solução para redes de grande dimensão, com maior número de componentes.
Multi-criteria optimisation approach to increase the delivered power in radial distribution networks
Resumo:
This study proposes a new methodology to increase the power delivered to any load point in a radial distribution network, through the identification of new investments in order to improve the repair time. This research work is innovative and consists in proposing a full optimisation model based on mixed-integer non-linear programming considering the Pareto front technique. The goal is to achieve a reduction in repair times of the distribution networks components, while minimising the costs of that reduction as well as non-supplied energy costs. The optimisation model considers the distribution network technical constraints, the substation transformer taps, and it is able to choose the capacitor banks size. A case study based on a 33-bus distribution network is presented in order to illustrate in detail the application of the proposed methodology.
Resumo:
Tipicamente as redes elétricas de distribuição apresentam uma topologia parcialmente malhada e são exploradas radialmente. A topologia radial é obtida através da abertura das malhas nos locais que otimizam o ponto de operação da rede, através da instalação de aparelhos de corte que operam normalmente abertos. Para além de manterem a topologia radial, estes equipamentos possibilitam também a transferência de cargas entre saídas, aquando da ocorrência de defeitos. As saídas radiais são ainda dotadas de aparelhos de corte que operam normalmente fechados, estes têm como objetivo maximizar a fiabilidade e isolar defeitos, minimizando a área afetada pelos mesmos. Assim, na presente dissertação são desenvolvidos dois algoritmos determinísticos para a localização ótima de aparelhos de corte normalmente abertos e fechados, minimizando a potência ativa de perdas e o custo da energia não distribuída. O algoritmo de localização de aparelhos de corte normalmente abertos visa encontrar a topologia radial ótima que minimiza a potência ativa de perdas. O método é desenvolvido em ambiente Matlab – Tomlab, e é formulado como um problema de programação quadrática inteira mista. A topologia radial ótima é garantida através do cálculo de um trânsito de potências ótimo baseado no modelo DC. A função objetivo é dada pelas perdas por efeito de Joule. Por outro lado o problema é restringido pela primeira lei de Kirchhoff, limites de geração das subestações, limites térmicos dos condutores, trânsito de potência unidirecional e pela condição de radialidade. Os aparelhos de corte normalmente fechados são localizados ao longo das saídas radiais obtidas pelo anterior algoritmo, e permite minimizar o custo da energia não distribuída. No limite é possível localizar um aparelho de corte normalmente fechado em todas as linhas de uma rede de distribuição, sendo esta a solução que minimiza a energia não distribuída. No entanto, tendo em conta que a cada aparelho de corte está associado um investimento, é fundamental encontrar um equilíbrio entre a melhoria de fiabilidade e o investimento. Desta forma, o algoritmo desenvolvido avalia os benefícios obtidos com a instalação de aparelhos de corte normalmente fechados, e retorna o número e a localização dos mesmo que minimiza o custo da energia não distribuída. Os métodos apresentados são testados em duas redes de distribuição reais, exploradas com um nível de tensão de 15 kV e 30 kV, respetivamente. A primeira rede é localizada no distrito do Porto e é caraterizada por uma topologia mista e urbana. A segunda rede é localizada no distrito de Bragança e é caracterizada por uma topologia maioritariamente aérea e rural.
Resumo:
This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.
Resumo:
Multiproduct plants, Dynamic Optimization, Mixed Integer Linear/Non-Linear Programming, Scheduling
Resumo:
The Thesis gives a decision support framework that has significant impact on the economic performance and viability of a hydropower company. The studyaddresses the short-term hydropower planning problem in the Nordic deregulated electricity market. The basics of the Nordic electricity market, trading mechanisms, hydropower system characteristics and production planning are presented in the Thesis. The related modelling theory and optimization methods are covered aswell. The Thesis provides a mixed integer linear programming model applied in asuccessive linearization method for optimal bidding and scheduling decisions inthe hydropower system operation within short-term horizon. A scenario based deterministic approach is exploited for modelling uncertainty in market price and inflow. The Thesis proposes a calibration framework to examine the physical accuracy and economic optimality of the decisions suggested by the model. A calibration example is provided with data from a real hydropower system using a commercial modelling application with the mixed integer linear programming solver CPLEX.
Resumo:
Teollisuuden tuotannon eri prosessien optimointi on hyvin ajankohtainen aihe. Monet ohjausjärjestelmät ovat ajalta, jolloin tietokoneiden laskentateho oli hyvin vaatimaton nykyisiin verrattuna. Työssä esitetään tuotantoprosessi, joka sisältää teräksen leikkaussuunnitelman muodostamisongelman. Valuprosessi on yksi teräksen valmistuksen välivaiheita. Siinä sopivaan laatuun saatettu sula teräs valetaan linjastoon, jossa se jähmettyy ja leikataan aihioiksi. Myöhemmissä vaiheissa teräsaihioista muokataan pienempiä kokonaisuuksia, tehtaan lopputuotteita. Jatkuvavaletut aihiot voidaan leikata tilauskannasta riippuen monella eri tavalla. Tätä varten tarvitaan leikkaussuunnitelma, jonka muodostamiseksi on ratkaistava sekalukuoptimointiongelma. Sekalukuoptimointiongelmat ovat optimoinnin haastavin muoto. Niitä on tutkittu yksinkertaisempiin optimointiongelmiin nähden vähän. Nykyisten tietokoneiden laskentateho on kuitenkin mahdollistanut raskaampien ja monimutkaisempien optimointialgoritmien käytön ja kehittämisen. Työssä on käytetty ja esitetty eräs stokastisen optimoinnin menetelmä, differentiaalievoluutioalgoritmi. Tässä työssä esitetään teräksen leikkausoptimointialgoritmi. Kehitetty optimointimenetelmä toimii dynaamisesti tehdasympäristössä käyttäjien määrittelemien parametrien mukaisesti. Työ on osa Syncron Tech Oy:n Ovako Bar Oy Ab:lle toimittamaa ohjausjärjestelmää.
Resumo:
Background: Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results: We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer- approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion: Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.
Resumo:
Environmental issues, including global warming, have been serious challenges realized worldwide, and they have become particularly important for the iron and steel manufacturers during the last decades. Many sites has been shut down in developed countries due to environmental regulation and pollution prevention while a large number of production plants have been established in developing countries which has changed the economy of this business. Sustainable development is a concept, which today affects economic growth, environmental protection, and social progress in setting up the basis for future ecosystem. A sustainable headway may attempt to preserve natural resources, recycle and reuse materials, prevent pollution, enhance yield and increase profitability. To achieve these objectives numerous alternatives should be examined in the sustainable process design. Conventional engineering work cannot address all of these substitutes effectively and efficiently to find an optimal route of processing. A systematic framework is needed as a tool to guide designers to make decisions based on overall concepts of the system, identifying the key bottlenecks and opportunities, which lead to an optimal design and operation of the systems. Since the 1980s, researchers have made big efforts to develop tools for what today is referred to as Process Integration. Advanced mathematics has been used in simulation models to evaluate various available alternatives considering physical, economic and environmental constraints. Improvements on feed material and operation, competitive energy market, environmental restrictions and the role of Nordic steelworks as energy supplier (electricity and district heat) make a great motivation behind integration among industries toward more sustainable operation, which could increase the overall energy efficiency and decrease environmental impacts. In this study, through different steps a model is developed for primary steelmaking, with the Finnish steel sector as a reference, to evaluate future operation concepts of a steelmaking site regarding sustainability. The research started by potential study on increasing energy efficiency and carbon dioxide reduction due to integration of steelworks with chemical plants for possible utilization of available off-gases in the system as chemical products. These off-gases from blast furnace, basic oxygen furnace and coke oven furnace are mainly contained of carbon monoxide, carbon dioxide, hydrogen, nitrogen and partially methane (in coke oven gas) and have proportionally low heating value but are currently used as fuel within these industries. Nonlinear optimization technique is used to assess integration with methanol plant under novel blast furnace technologies and (partially) substitution of coal with other reducing agents and fuels such as heavy oil, natural gas and biomass in the system. Technical aspect of integration and its effect on blast furnace operation regardless of capital expenditure of new operational units are studied to evaluate feasibility of the idea behind the research. Later on the concept of polygeneration system added and a superstructure generated with alternative routes for off-gases pretreatment and further utilization on a polygeneration system producing electricity, district heat and methanol. (Vacuum) pressure swing adsorption, membrane technology and chemical absorption for gas separation; partial oxidation, carbon dioxide and steam methane reforming for methane gasification; gas and liquid phase methanol synthesis are the main alternative process units considered in the superstructure. Due to high degree of integration in process synthesis, and optimization techniques, equation oriented modeling is chosen as an alternative and effective strategy to previous sequential modelling for process analysis to investigate suggested superstructure. A mixed integer nonlinear programming is developed to study behavior of the integrated system under different economic and environmental scenarios. Net present value and specific carbon dioxide emission is taken to compare economic and environmental aspects of integrated system respectively for different fuel systems, alternative blast furnace reductants, implementation of new blast furnace technologies, and carbon dioxide emission penalties. Sensitivity analysis, carbon distribution and the effect of external seasonal energy demand is investigated with different optimization techniques. This tool can provide useful information concerning techno-environmental and economic aspects for decision-making and estimate optimal operational condition of current and future primary steelmaking under alternative scenarios. The results of the work have demonstrated that it is possible in the future to develop steelmaking towards more sustainable operation.
Resumo:
In this paper we consider the programming of job rotation in the assembly line worker assignment and balancing problem. The motivation for this study comes from the designing of assembly lines in sheltered work centers for the disabled, where workers have different task execution times. In this context, the well-known training aspects associated with job rotation are particularly desired. We propose a metric along with a mixed integer linear model and a heuristic decomposition method to solve this new job rotation problem. Computational results show the efficacy of the proposed heuristics. (C) 2009 Elsevier B.V. All rights reserved.