975 resultados para micro-droplets formation
Resumo:
Epidote-group minerals, together with albite, quartz, fluorite, Al-poor and Fe-rich phyllosilicates, zircon, and minor oxides and sulphides, are typical hydrothermal phases in peralkaline alkali-feldspar granites from the Corupá Pluton, Graciosa Province, South Brazil. The epidote-group minerals occur as single crystals and as aggregates filling in rock interstices and miarolitic cavities. They display complex recurrent zoning patterns with an internal zone of ferriallanite-(Ce), followed by allanite-(Ce), then epidote-ferriepidote, and an external zone with allanite-(Ce), with sharp limits, as shown in BSE and X-ray images. REE patterns show decreasing fractionation degrees of LREE over HREE from ferriallanite to epidote. The most external allanite is enriched in MREE. LA-ICP-MS data indicate that ferriallanite is enriched (>10-fold) in Ti, Sr and Ga, and depleted in Mg, Rb, Th and Zr relative to the host granite. Allanite has lower Ga and Mn and higher Zr, Nb and U contents as compared to ferriallanite, while epidote is enriched in Sr, U and depleted in Pb, Zr, Hf, Ti and Ga. The formation of these minerals is related to the variable concentrations of HFSE, Ca, Al, Fe and F in fluids remaining from magmatic crystallization, in an oxidizing environment, close to the HM buffer. L-MREE were in part released by the alteration of chevkinite, their main primary repository in the host rocks.
Resumo:
[EN] First description of the complete embryo and larval development of the Canarian abalone (Haliotis tuberculata coccinea Reeve.) was conducted along 39 stages from fertilization to the appearance of the third tubule on the cephalic tentacles and illustrated in a microphotographic sequence. Eggs obtained by induced spawning with hydrogen peroxide from the GIA captive broodstock were stocked at a density of 10 eggs/mL and kept at 23 0.5 BC for 62 h until the formation of the third tubule. Live eggs and larvae were continuously observed on a 24 h basis at a 3400 magnification under transmitted light. At each stages, specific morphological features, illustrated by microscopic photographs, were described, as well as the time required for their apparition. Fertilized eggs diameter was 205 8 mm (mean SD), whereas length and width of larvae ready to undergo metamorphosis were 216.6 5.3 mmand 172 8.8 mm, respectively. Knowledge on the larval morphological development acquired through this study will contribute to the improvement of larval rearing techniques for this abalone species.
Resumo:
The aim of this work is to measure the stress inside a hard micro object under extreme compression. To measure the internal stress, we compressed ruby spheres (a-Al2O3: Cr3+, 150 µm diameter) between two sapphire plates. Ruby fluorescence spectrum shifts to longer wavelengths under compression and can be related to the internal stress by a conversion coefficient. A confocal laser scanning microscope was used to excite and collect fluorescence at desired local spots inside the ruby sphere with spatial resolution of about 1 µm3. Under static external loads, the stress distribution within the center plane of the ruby sphere was measured directly for the first time. The result agreed to Hertz’s law. The stress across the contact area showed a hemispherical profile. The measured contact radius was in accord with the calculation by Hertz’s equation. Stress-load curves showed spike-like decrease after entering non-elastic phase, indicating the formation and coalescence of microcracks, which led to relaxing of stress. In the vicinity of the contact area luminescence spectra with multiple peaks were observed. This indicated the presence of domains of different stress, which were mechanically decoupled. Repeated loading cycles were applied to study the fatigue of ruby at the contact region. Progressive fatigue was observed when the load exceeded 1 N. As long as the load did not exceed 2 N stress-load curves were still continuous and could be described by Hertz’s law with a reduced Young’s modulus. Once the load exceeded 2 N, periodical spike-like decreases of the stress could be observed, implying a “memory effect” under repeated loading cycles. Vibration loading with higher frequencies was applied by a piezo. Redistributions of intensity on the fluorescence spectra were observed and it was attributed to the repopulation of the micro domains of different elasticity. Two stages of under vibration loading were suggested. In the first stage continuous damage carried on until certain limit, by which the second stage, e.g. breakage, followed in a discontinuous manner.
Resumo:
Air quality represents a key issue in the so-called pollution “hot spots”: environments in which anthropogenic sources are concentrated and dispersion of pollutants is limited. One of these environments, the Po Valley, normally experiences exceedances of PM10 and PM2.5 concentration limits, especially in winter when the ventilation of the lower layers of the atmosphere is reduced. This thesis provides a highlight of the chemical properties of particulate matter and fog droplets in the Po Valley during the cold season, when fog occurrence is very frequent. Fog-particles interactions were investigated with the aim to determine their impact on the regional air quality. Size-segregated aerosol samples were collected in Bologna, urban site, and San Pietro Capofiume (SPC), rural site, during two campaigns (November 2011; February 2013) in the frame of Supersito project. The comparison between particles size-distribution and chemical composition in both sites showed the relevant contribution of the regional background and secondary processes in determining the Po Valley aerosol concentration. Occurrence of fog in November 2011 campaign in SPC allowed to investigate the role of fog formation and fog chemistry in the formation, processing and deposition of PM10. Nucleation scavenging was investigated with relation to the size and the chemical composition of particles. We found that PM1 concentration is reduced up to 60% because of fog scavenging. Furthermore, aqueous-phase secondary aerosol formation mechanisms were investigated through time-resolved measurements. In SPC fog samples have been systematically collected and analysed since the nineties; a 20 years long database has been assembled. This thesis reports for the first time the results of this long time series of measurements, showing a decrease of sulphate and nitrate concentration and an increase of pH that reached values close to neutrality. A detailed discussion about the occurred changes in fog water composition over two decades is presented.
Resumo:
Aerosol particles are strongly related to climate, air quality, visibility and human health issues. They contribute the largest uncertainty in the assessment of the Earth´s radiative budget, directly by scattering or absorbing solar radiation or indirectly by nucleating cloud droplets. The influence of aerosol particles on cloud related climatic effects essentially depends upon their number concentration, size and chemical composition. A major part of submicron aerosol consists of secondary organic aerosol (SOA) that is formed in the atmosphere by the oxidation of volatile organic compounds. SOA can comprise a highly diverse spectrum of compounds that undergo continuous chemical transformations in the atmosphere.rnThe aim of this work was to obtain insights into the complexity of ambient SOA by the application of advanced mass spectrometric techniques. Therefore, an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) was applied in the field, facilitating the measurement of ions of the intact molecular organic species. Furthermore, the high measurement frequency provided insights into SOA composition and chemical transformation processes on a high temporal resolution. Within different comprehensive field campaigns, online measurements of particular biogenic organic acids were achieved by combining an online aerosol concentrator with the APCI-IT-MS. A holistic picture of the ambient organic aerosol was obtained through the co-located application of other complementary MS techniques, such as aerosol mass spectrometry (AMS) or filter sampling for the analysis by liquid chromatography / ultrahigh resolution mass spectrometry (LC/UHRMS).rnIn particular, during a summertime field study at the pristine boreal forest station in Hyytiälä, Finland, the partitioning of organic acids between gas and particle phase was quantified, based on the online APCI-IT-MS and AMS measurements. It was found that low volatile compounds reside to a large extent in the gas phase. This observation can be interpreted as a consequence of large aerosol equilibration timescales, which build up due to the continuous production of low volatile compounds in the gas phase and/or a semi-solid phase state of the ambient aerosol. Furthermore, in-situ structural informations of particular compounds were achieved by using the MS/MS mode of the ion trap. The comparison to MS/MS spectra from laboratory generated SOA of specific monoterpene precursors indicated that laboratory SOA barely depicts the complexity of ambient SOA. Moreover, it was shown that the mass spectra of the laboratory SOA more closely resemble the ambient gas phase composition, indicating that the oxidation state of the ambient organic compounds in the particle phase is underestimated by the comparison to laboratory ozonolysis. These observations suggest that the micro-scale processes, such as the chemistry of aerosol aging or the gas-to-particle partitioning, need to be better understood in order to predict SOA concentrations more reliably.rnDuring a field study at the Mt. Kleiner Feldberg, Germany, a slightly different aerosol concentrator / APCI-IT-MS setup made the online analysis of new particle formation possible. During a particular nucleation event, the online mass spectra indicated that organic compounds of approximately 300 Da are main constituents of the bulk aerosol during ambient new particle formation. Co-located filter analysis by LC/UHRMS analysis supported these findings and furthermore allowed to determine the molecular formulas of the involved organic compounds. The unambiguous identification of several oxidized C 15 compounds indicated that oxidation products of sesquiterpenes can be important compounds for the initial formation and subsequent growth of atmospheric nanoparticles.rnThe LC/UHRMS analysis furthermore revealed that considerable amounts of organosulfates and nitrooxy organosulfates were detected on the filter samples. Indeed, it was found that several nitrooxy organosulfate related APCI-IT-MS mass traces were simultaneously enhanced. Concurrent particle phase ion chromatography and AMS measurements indicated a strong bias between inorganic sulfate and total sulfate concentrations, supporting the assumption that substantial amounts of sulfate was bonded to organic molecules.rnFinally, the comprehensive chemical analysis of the aerosol composition was compared to the hygroscopicity parameter kappa, which was derived from cloud condensation nuclei (CCN) measurements. Simultaneously, organic aerosol aging was observed by the evolution of a ratio between a second and a first generation biogenic oxidation product. It was found that this aging proxy positively correlates with increasing hygroscopicity. Moreover, it was observed that the bonding of sulfate to organic molecules leads to a significant reduction of kappa, compared to an internal mixture of the same mass fractions of purely inorganic sulfate and organic molecules. Concluding, it has been shown within this thesis that the application of modern mass spectrometric techniques allows for detailed insights into chemical and physico-chemical processes of atmospheric aerosols.rn
Resumo:
Organic semiconductor technology has attracted considerable research interest in view of its great promise for large area, lightweight, and flexible electronics applications. Owing to their advantages in processing and unique physical properties, organic semiconductors can bring exciting new opportunities for broad-impact applications requiring large area coverage, mechanical flexibility, low-temperature processing, and low cost. In order to achieve highly flexible device architecture it is crucial to understand on a microscopic scale how mechanical deformation affects the electrical performance of organic thin film devices. Towards this aim, I established in this thesis the experimental technique of Kelvin Probe Force Microscopy (KPFM) as a tool to investigate the morphology and the surface potential of organic semiconducting thin films under mechanical strain. KPFM has been employed to investigate the strain response of two different Organic Thin Film Transistor with active layer made by 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-Pentacene), and Poly(3-hexylthiophene-2,5-diyl) (P3HT). The results show that this technique allows to investigate on a microscopic scale failure of flexible TFT with this kind of materials during bending. I find that the abrupt reduction of TIPS-pentacene device performance at critical bending radii is related to the formation of nano-cracks in the microcrystal morphology, easily identified due to the abrupt variation in surface potential caused by local increase in resistance. Numerical simulation of the bending mechanics of the transistor structure further identifies the mechanical strain exerted on the TIPS-pentacene micro-crystals as the fundamental origin of fracture. Instead for P3HT based transistors no significant reduction in electrical performance is observed during bending. This finding is attributed to the amorphous nature of the polymer giving rise to an elastic response without the occurrence of crack formation.
Resumo:
Although the protozoan parasite, Trypanosoma brucei, can acquire lipids from its environment, recent reports have shown that it is also capable of de novo synthesis of all major phospholipids. Here we provide an overview of the biosynthetic pathways involved in phospholipid formation in T. brucei and highlight differences to corresponding pathways in other eukaryotes, with the aim of promoting trypanosomes as an attractive model organism to study lipid biosynthesis. We show that de novo synthesis of phosphatidylethanolamine involving CDP-activated intermediates is essential in T. brucei and that a reduction in its cellular content affects mitochondrial morphology and ultrastructure. In addition, we highlight that reduced levels of phosphatidylcholine inhibit nuclear division, suggesting a role for phosphatidylcholine formation in the control of cell division. Furthermore, we discuss possible routes leading to phosphatidylserine and cardiolipin formation in T. brucei and review the biosynthesis of phosphatidylinositol, which seems to take place in two separate compartments. Finally, we emphasize that T. brucei represents the only eukaryote so far that synthesizes all three sphingophospholipid classes, sphingomyelin, inositolphosphorylceramide and ethanolaminephosphorylceramide, and that their production is developmentally regulated.
Resumo:
Many industrial solids processes require the production of disperse particles. In industries such as food, personal care, and pharmaceuticals, particle formation is widely used to produce solid products or to separate substances in intermediate process steps. The most important characteristics known to impact the effectiveness of a solid product are purity, size, internal structure, and morphology. These characteristics are essential to maintain optimal operation of subsequent process steps and for obtaining the desired high quality product. This thesis aims to aid in the advancement of particle production technology by (1) investigating the use of a vibrating orifice aerosol generator (VOAG) for collecting data to predict particle attributes including morphology, size, and internal structure as a function of processing parameters such as solvent, solution concentration, air flow rate, and initial droplet size, as well as to (2) determine the extent to which uniform droplet evaporation can be a tool to achieve novel particle morphologies, controlled sizes, or internal structures (crystallinity and crystal form). Experimental results for succinic acid, L-serine, and L-glutamic acid suggest that particles of controlled characteristics can indeed be produced by this method. Analysis by scanning electron microscopy (SEM), nanoindentation, and X-ray diffraction (XRD) shows that various sizes, internal structures, and morphologies can be obtained using the VOAG. Furthermore, unique morphologies and unexpected internal structures were able to be achieved for succinic acid, providing an added benefit to particle formation by this method.
Resumo:
Elderly patients frequently suffer from osteoporotic vertebral fractures resulting in the need of vertebroplasty or kyphoplasty. Nevertheless, no data are available about the long-term consequences of cement injection into osteoporotic bone. Therefore, the aim of the present study was to evaluate the long-term tissue reaction on bone cement injected to osteoporotic bone during vertebroplasty. The thoracic spine of an 80-year-old female was explanted 3.5 years after vertebroplasty with polymethylmethacrylate. The treatment had been performed due to painful osteoporotic compression fractures. Individual vertebral bodies were cut in axial or sagittal sections after embedding. The sections were analysed using contact radiography and staining with toluidine blue. Furthermore, selected samples were evaluated with scanning electron microscopy and micro-compted tomography (in-plane resolution 6 microm). Large amounts of newly formed callus surrounding the injected polymethylmethacrylate were detected with all imaging techniques. The callus formation almost completely filled the spaces between the vertebral endplate, the cancellous bone, and the injected polymethylmethacrylate. In trabecular bone microfractures and osteoclast lacuna were bridged or filled with newly formed bone. Nevertheless, the majority of the callus formation was found in the immediate vicinity of the polymethylmethacrylate without any obvious relationship to trabecular fractures. The results indicate for the first time that, contrary to established knowledge, even in osteoporosis the formation of large amounts of new bone is possible.
Resumo:
While nucleation of solids in supercooled liquids is ubiquitous [15, 65, 66], surface crystallization, the tendency for freezing to begin preferentially at the liquid-gas interface, has remained puzzling [74, 18, 68, 69, 51, 64, 72, 16]. Here we employ high-speed imaging of supercooled water drops to study the phenomenon of heterogeneous surface crystallization. Our geometry avoids the "point-like contact" of prior experiments by providing a simple, symmetric contact line (triple line defined by the substrate-liquid-air interface) for a drop resting on a homogeneous silicon substrate. We examine three possible mechanisms that might explain these laboratory observations: (i) Line Tension at the triple line, (ii) Thermal Gradients within the droplets and (iii) Surface Texture. In our first study we record nearly perfect spatial uniformity in the immersed (liquid-substrate) region and, thereby, no preference for nucleation at the triple line. In our second study, no influence of thermal gradients on the preference for freezing at the triple line was observed. Motivated by the conjectured importance of line tension (τ) [1, 66] for heterogeneous nucleation, we also searched for evidence of a transition to surface crystallization at length scales on the order of δ ∼ τ/σ, where σ is the surface tension [14]; poorly constrained τ [49] leads to δ ranging from microns to nanometers. We demonstrate that nano-scale texture causes a shift in the nucleation to the three-phase contact line, while micro-scale texture does not. The possibility of a critical length scale has implications for the effectiveness of nucleation catalysts, including formation of ice in atmospheric clouds [7].
Resumo:
A sponge spicule is a siliceous or calcareous individual or group of rays which form a framework for the sponge. Sponge spicules are very delicate and easily broken. The methods used in obtaining micro-fossils vary considerably with the type of material from which they are to be recovered and the frailness of the fossil obtained.
Resumo:
Brushite and octacalcium phosphate (OCP) crystals are well-known precursors of hydroxylapatite (HAp), the main mineral found in bone. In this report, we present a new method for biomimicking brushite and OCP using single and double diffusion techniques. Brushite and OCP crystals were grown in an iota-carrageenan gel. The aggregates were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and thermal gravimetric analysis (TGA). SEM revealed different morphologies of brushite crystals from highly porous aggregates to plate-shaped forms. OCP crystals grown in iota-carrageenan showed a porous spherical shape different from brushite growth forms. The XRD method demonstrated that the single-diffusion method favors the formation of monoclinic brushite. In contrast, the double diffusion method was found to promote the formation of the triclinic octacalcium phosphate OCP phase. By combining the different parameters for crystal growth in carrageenan, such as ion concentration, gel pH and gel density, it is possible to modify the morphology of composite crystals, change the phase of calcium phosphate and modulate the amount of carrageenan inclusion in crystals. This study suggests that iota-carrageenan is a high-molecular-weight polysaccharide that is potentially applicable for controlling calcium phosphate crystallization.
Resumo:
Microinjection molding was employed to fabricate low-cost polymer cantilever arrays for sensor applications. Cantilevers with micrometer dimensions and aspect ratios as large as 10 were successfully manufactured from polymers, including polypropylene and polyvinylidenfluoride. The cantilevers perform similar to the established silicon cantilevers, with Q-factors in the range of 10–20. Static deflection of gold coated polymer cantilevers was characterized with heat cycling and self-assembled monolayer formation of mercaptohexanols. A hybrid mold concept allows easy modification of the surface topography, enabling customized mechanical properties of individual cantilevers. Combined with functionalization and surface patterning, the cantilever arrays are qualified for biomedical applications
Resumo:
Two sets of mass spectrometry-based methods were developed specifically for the in vivo study of extracellular neuropeptide biochemistry. First, an integrated micro-concentration/desalting/matrix-addition device was constructed for matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) to achieve attomole sensitivity for microdialysis samples. Second, capillary electrophoresis (CE) was incorporated into the above micro-liquid chromatography (LC) and MALDI MS system to provide two-dimensional separation and identification (i.e. electrophoretic mobility and molecular mass) for the analysis of complex mixtures. The latter technique includes two parts of instrumentation: (1) the coupling of a preconcentration LC column to the inlet of a CE capillary, and (2) the utilization of a matrix-precoated membrane target for continuous CE effluent deposition and for automatic MALDI MS analysis (imaging) of the CE track.^ Initial in vivo data reveals a carboxypeptidase A (CPA) activity in rat brain involved in extracellular neurotensin metabolism. Benzylsuccinic acid, a CPA inhibitor, inhibited neurotensin metabolite NT1-12 formation by 70%, while inhibitors of other major extracellular peptide metabolizing enzymes increased NT1-12 formation. CPA activity has not been observed in previous in vitro experiments. Next, the validity of the methodology was demonstrated in the detection and structural elucidation of an endogenous neuropeptide, (L)VV-hemorphin-7, in rat brain upon ATP stimulation. Finally, the combined micro-LC/CE/MALDI MS was used in the in vivo metabolic study of peptide E, a mu-selective opioid peptide with 25 amino acid residues. Profiles of 88 metabolites were obtained, their identity being determined by their mass-to-charge ratio and electrophoretic mobility. The results indicate that there are several primary cleavage sites in vivo for peptide E in the release of its enkephalin-containing fragments. ^