904 resultados para mechanical contact


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The premature failure of a large agglomeration machine used for the annual production of 360,000 m(3) of eucalypt fiber panels was investigated to identify the nucleation and growth mechanisms of cracking in PH stainless steel belts (126 m x 2.9 m x 3.0 mm). These belts are used to compress a cushion composed of eucalyptus fibers and glue, being the pressure transmitted from the pistons by the action of numerous case-hardening steel rolls. Examination of the belt working interfaces (belt/rolls and belt/eucalypt fibers) indicated that the main cracking was nucleated on the belt/roll interface and that there is a clear relationship between the crack nucleation and the presence of superficial irregularities, which were observed on the belt/roll working surface. Used rolls showed the presence of perimetric wear marks and 2 mu m silicon-rich encrusted particles (identified as silicon carbide). Lubricant residues contained the presence of helicoidal wires, which were originated by the release of the stainless steel cleaning brush bristles, and 15 mu m diameter metallic particles, which were generated by material detachment of the belt. The presence of foreign particles on the tribological interface contributed to an increase of the shear stresses at the surfaces and, consequently, the number of the contact fatigue crack nucleation sites in the belt/roll tribo-interface. The cracking was originated on the belt/roll interface of the stainless steel belt by a mixed rolling/slip contact fatigue mechanism, which promoted spalling and further nucleation and growth of conventional fatigue cracks. Finally, the system lubrication efficiency and the cleaning procedure should be optimised in order to increase the life expectancy of the belt. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the addition of high-impact polystyrene (HIPS) on polypropylene (PP) photodegradation was studied with blends obtained by extrusion with and without styrene-butadiene-styrene (SBS) copolymer (10 wt % with respect to the dispersed phase). The concentrations of HIPS ranged from 10 to 30 wt %. The blends and pure materials were exposed for periods of up to 15 weeks of UV irradiation; their mechanical properties (tensile and impact), fracture surface, and melt flow indices were monitored. After 3 weeks of UV exposure, all of the materials presented mechanical properties of the same order of magnitude. However, for times of exposure greater than 3 weeks, an increasing concentration of HIPS resulted in a better photostability of PP. These results were explained in light of morphological observations. This increase of photostability was even greater when SBS was added to the blends. It was more difficult to measure the melt flow index of the binary PP/HIPS blends than that of PP for low concentrations of HIPS; this was most likely due to energy transfer between the blend domains during photodegradation. This phenomenon was not observed for the ternary blends. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 770-779, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpha prime formation leads to material embrittlement and deterioration of corrosion resistance. In the present study, the mechanical and corrosion behavior of super duplex stainless steel UNS S32520 aged at 475 degrees C from 0.5 h to 1,032 h was evaluated using microhardness measurements, Charpy impact tests, electrochemical impedance spectroscopy, and cyclic polarization curves. The sensibility of these tests to the effects of alpha prime phase was investigated. The microhardness test showed a gradual increase in hardness with aging time, whereas the impact tests revealed losses of about 80% in the energy absorption capacity for the material aged for 12 h in comparison with the solution-annealed samples. The most responsive analysis was the impact test, which indirectly revealed the presence of this deleterious phase in samples aged for 0.5 h. The electrochemical impedance spectroscopy and polarization tests were not highly sensitive to the alpha prime phase unless these are present in large amounts in the stainless steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite membranes containing polysulfone (PSI) and sodium montmorillonite from Wyoming (MMT) were prepared by a combination of solution dispersion and the immersion step of the wet-phase inversion method. The purpose was to study the MMT addition with contents of 0.5 and 3.0 mass% MMT in the preparation of nanocomposite membranes by means of morphology, thermal, mechanical and hydrophilic properties of nanocomposite membranes and to compare these properties to the pure PSf membrane ones. Small-angle X-ray diffraction patterns revealed the formation of intercalated clay mineral layers in the PSf matrix and TEM images also presented an exfoliated structure. A good dispersion of the clay mineral particles was detected by SEM images. Tensile tests showed that both elongation at break and tensile strength of the nanocomposites were improved in comparison to the pristine PSf. The thermal stability of the nanocomposite membranes, evaluated by onset and final temperatures of degradation, was also enhanced. The hydrophilicity of the nanocomposite membranes, determined by water contact angle measurements, was higher; therefore, the MMT addition was useful to produce more hydrophilic membranes. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medium carbon steels are mostly used for simple applications; however, new applications have been developed for which good sheet metal formability is required. These types of steels have an inherent low formability. A medium-carbon hot-rolled SAE 1050 steel was selected for this study. It has been cold rolled with thickness reductions varying between 7 and 80%. The samples obtained were used to evaluate the strain hardening curve. For samples with a 50 and 80% thickness reduction, an annealing heat treatment was performed to achieve recrystallization. The material was characterized in the ""as-received"", cold rolled and annealed conditions using several methods: optical metallography, X-ray diffraction (texture), Vickers hardness, and tensile testing. For large thickness reductions, the SAE 1050 steel presented low elongation, less than 2%, and yield strength (YS) and tensile strength (TS) around 1400 MPa. Texture in the ""as-received"" condition showed strong components on the {001} plane, in the < 100 >, < 210 > and (110) directions. After cold rolling, the texture did not present any significant changes for small thickness reductions, however. It changed completely for large ones, where gamma, < 111 >//ND, alpha, < 110 > HRD, and gamma prime, < 223 >//ND, fibres were strengthened. After annealing, the microstructure of the SAE 1050 steel was characterized by recrystallized ferrite and globular cementite. There was little change in the alpha fibre for the 50% reduction, whereas for the 80% reduction, its intensity increased. Both gamma and gamma prime fibres vanished upon annealing for 50 and 80% reductions alike. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medium carbon steels are mostly used for simple applications; nevertheless new applications have been developed for which good sheet formability is required. This class of steels has an inherent low formability. A medium carbon hot rolled SAE 1050 steel has been selected for this study. It has been cold rolled with reductions in the 7-80% range. Samples have been used to assess the cold work hardening curve. For samples with a 50 and 80% thickness reduction, an annealing heat treatment has been performed to obtain recrystallization. The material has been characterized in the ""as received"", cold rolled and annealed conditions, using several methods: optical microscopy, X-ray diffraction (texture), Vickers hardness and tensile testing. The 50% cold rolled and recrystallized material has been further studied in terms of sheet metal formability and texture evolution during the actual stamping of a steel toecap that has been used to validate the finite element simulations. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyurethane composites reinforced with curaua fiber at 5, 10 and 20% mass/mass proportions were prepared by using the conventional melt-mixing method. The influence of curaua fibers on the thermal behavior and polymer cohesiveness in polyurethane matrix was evaluated by dynamic mechanical thermal analysis (DMTA) and by differential scanning calorimetry (DSC). This specific interaction between the fibers and the hard segment domain was influenced by the behavior of the storage modulus E` and the loss modulus EaEuro(3) curves. The polyurethane PU80 is much stiffer and resistant than the other composites at low temperatures up to 70A degrees C. All samples were thermoplastic and presented a rubbery plateau over a wide temperature range above the glass transition temperature and a thermoplastic flow around 170A degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical blocking of the columnar front during the columnar to equiaxed transition (CET) is studied by quantitatively comparing the CET positions obtained with one stochastic model and two deterministic models for the unidirectional solidification of an Al-7 (wt pct) Si alloy. One of the deterministic models is based on the solutal blocking of the columnar front, whereas the other model is based on the mechanical blocking. The solutal-blocking model and the mechanical-blocking model with the traditional blocking fraction of 0.49 give columnar zones larger than those predicted with the stochastic model. When a blocking fraction of 0.2 is adopted, however, the agreement is very good for a range of nucleation undercoolings and number density of equiaxed grains. Therefore, changing the mechanical-blocking fraction in deterministic models from 0.49 to 0.2 seems to model more accurately the mechanical-blocking process that can lead to the CET.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several composites based on high-density polyethylene (PE), organically modified montmorillonite (OMMT) and ethylene/methacrylic acid copolymer (EMAA) were prepared by melt compounding. Three Na(+)-montmorillonites (MMT) of different precedence were modified with hexadecyl trimethyl ammonium chloride in order to change their nature from hydrophilic to organophilic. The composites morphology was examined by XRD, SEM and TEM. Mechanical properties were evaluated under static conditions. A slight reinforcement was achieved only when OMMT was added to PE. When EMAA was added to the composites, it negatively interacted with OMMT, diminishing the interlayer distance of OMMT, changing the composite morphology, as if OMMT was not present in composites, and deteriorating their mechanical properties. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports on the effect of the type of backside contact used in the electrochemical process and their relation with the structural features and optical responses of the one-dimensional photonic crystal (PC) anodized in simple and double electrochemical cell. The PC, obtained in the single cell, showed to have thicker layers than of the PC obtained in double electrochemical cell. Additionally, the PC obtained in double cell showed highest reflectance in the band gap region than of the PCs obtained in single cell. These results suggest that the interface roughness between adjacent layers in the PC devices obtained in double electrochemical cell is minimized. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To improve the surface characteristics of epoxy resin coatings, a treatment by fluorine-containing plasma was used to develop a coating with low surface free energy and improved chemical resistance. Through the coating analysis it was possible to verify information about the CF(n) bond formation and the fluorination depth. The best plasma process parameters presented the best fluorination depth, 90 nm, and fluorine concentration was nearly 30%. The improvement in contact angle of water was 50% and of raw petroleum was 130%. Salt spray test proves that the coating fluorination decreases the chance of substrate corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are several ways of controlling the propagation of a contagious disease. For instance, to reduce the spreading of an airborne infection, individuals can be encouraged to remain in their homes and/or to wear face masks outside their domiciles. However, when a limited amount of masks is available, who should use them: the susceptible subjects, the infective persons or both populations? Here we employ susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations and probabilistic cellular automata in order to investigate how the deletion of links in the random complex network representing the social contacts among individuals affects the dynamics of a contagious disease. The inspiration for this study comes from recent discussions about the impact of measures usually recommended by health public organizations for preventing the propagation of the swine influenza A (H1N1) virus. Our answer to this question can be valid for other eco-epidemiological systems. (C) 2010 Elsevier BM. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the spreading of contagious diseases in a population of constant size using susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations (ODEs) and probabilistic cellular automata (PCA). In the PCA model, each individual (represented by a cell in the lattice) is mainly locally connected to others. We investigate how the topological properties of the random network representing contacts among individuals influence the transient behavior and the permanent regime of the epidemiological system described by ODE and PCA. Our main conclusions are: (1) the basic reproduction number (commonly called R(0)) related to a disease propagation in a population cannot be uniquely determined from some features of transient behavior of the infective group; (2) R(0) cannot be associated to a unique combination of clustering coefficient and average shortest path length characterizing the contact network. We discuss how these results can embarrass the specification of control strategies for combating disease propagations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports the characteristics of blast furnace slag (BFS) pastes activated with hydrated lime (5%) and hydrated lime (2%) plus gypsum (6%) in relation to compressive strength, shrinkage (autogenous and drying) and microstructure (porosity, hydrated products). The paste mixtures were characterized using powder X-ray diffraction (XRD), mercury intrusion porosimetry (MIP) and thermogravimetric analysis (TG/DTG). BSF activated with lime and gypsum (LG) results in larger amounts of ettringite when compared with BFS activated with lime (L). Although the porosities of the L and LG mixtures were about the same, there was a greater pore refinement for the BFS activated with lime, with an increase in mesopores volume with age. The presence of ettringite and the higher volumes of macropores cause the compressive strength of BSF activated with hydrated lime plus gypsum to be smaller than that of BFS activated with lime. For both chemical activators, compressive strength developed slowly at early ages. Autogenous and drying shrinkage were greater for the BFS activated with lime, believed to result from the more refined porous structure in comparison with the mixture activated with gypsum plus lime. (c) 2010 Elsevier Ltd. All rights reserved.