811 resultados para mathematical problem-solving


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mestrado (PES II), Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico, 27 de Junho de 2014, Universidade dos Açores (Relatório de Estágio).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mestrado (PES II), Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico, 1 de Julho de 2014, Universidade dos Açores.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mestrado (PES II), Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico, 13 de Fevereiro de 2015, Universidade dos Açores.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A resolução de problemas é um processo fundamental na aprendizagem da matemática. Neste artigo, apresenta-se uma reflexão sobre a importância deste processo matemático e de como ele pode ser conduzido de forma a estimular o raciocínio matemático através da promoção da comunicação, em contexto de sala de aula. O trabalho foi realizado na etapa final de formação de educadores e professores no contexto do pré-escolar e do primeiro ciclo do ensino básico. Em resultado das atividades realizadas, discute-se o papel da utilização de uma heurística ao longo da resolução de problemas, a importância na escolha de estratégia para a interação com os alunos, bem como o desenho intencional de materiais didáticos. A experiência enquadra-se numa abordagem qualitativa de design de experiência de ensino.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Relatório final apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e 2.º Ciclos do Ensino Básico

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este artigo procura realçar que, através da conexão entre a literatura e a matemática, se podem criar situações em que as crianças abordem conceitos matemáticos de uma forma significativa permitindo que as habilidades matemáticas e as de linguagem se desenvolvam em conjunto. Uma das formas mais significativas de se construir conhecimento matemático é resolver problemas e desafios, tão comuns nos contos infantis. Apresentamos duas situações, que se enquadram nesta perspetiva pedagógica. Em ambas as situações foi usado um conto como ponto de partida para a construção de atividades matemáticas e tendo presente uma visão construtivista do ensino da matemática.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trabalho de Projecto apresentado para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teaching English as a Second / Foreign Language.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Relatório de estágio de mestrado em Ensino do 1.º e 2.º Ciclo do Ensino Básico

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper shows how instructors can use the problem‐based learning method to introduce producer theory and market structure in intermediate microeconomics courses. The paper proposes a framework where different decision problems are presented to students, who are asked to imagine that they are the managers of a firm who need to solve a problem in a particular business setting. In this setting, the instructors’ role isto provide both guidance to facilitate student learning and content knowledge on a just‐in‐time basis

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Immobile location-allocation (LA) problems is a type of LA problem that consists in determining the service each facility should offer in order to optimize some criterion (like the global demand), given the positions of the facilities and the customers. Due to the complexity of the problem, i.e. it is a combinatorial problem (where is the number of possible services and the number of facilities) with a non-convex search space with several sub-optimums, traditional methods cannot be applied directly to optimize this problem. Thus we proposed the use of clustering analysis to convert the initial problem into several smaller sub-problems. By this way, we presented and analyzed the suitability of some clustering methods to partition the commented LA problem. Then we explored the use of some metaheuristic techniques such as genetic algorithms, simulated annealing or cuckoo search in order to solve the sub-problems after the clustering analysis

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Des del principi dels temps històrics, la Matemàtica s'ha generat en totes les civilitzacions sobre la base de la resolució de problemes pràctics.Tanmateix, a partir del període grec la Història ens mostra la necessitat de fer un pas més endavant: l'evolució històrica de la Matemàtica situa els mètodes de raonament com a eix central de la recerca en Matemàtica. A partir d'una ullada als objectius i mètodes de treball d'alguns autors cabdals en la Història dels conceptes matemàtics postulem l'aprenentatge de les formes de raonament matemàtic com l'objectiu central de l'educació matemàtica, i la resolució de problemes com el mitjà més eficient per a coronar aquest objectiu.English version.From the beginning of the historical times, mathematics has been generated in all the civilizations on the base of the resolution of practical problems. Nevertheless, from the greek period History shows us the necessity to take one more step: the historical evolution of mathematics locates the methods of reasoning as the central axis of the research in mathematics. Glancing over the objectives and methods of work used bysome fundamental authors in the History of the mathematical concepts we postulated the learning of the forms of mathematical reasoning like the central objective of the mathematical education, and the resolution of problems as the most efficient way to carry out this objective.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tämä työ käsittelee puutukkien tilavuuden mittaamista värikonenäön avulla. Värikuvat on saatu Simpeleellä olevan metsäteollisuusyrityksen hiomosta. Työssä esitetään perusteellisesti matemaattinen teoria, joka liittyy käytettyihin kuvankäsittelymenetelmiin, kuten luokitteluun, kohinan poistoon ja tukkien segmentointiin. Esitetyt menetelmät implementointiin käytännössä ja eri menetelmillä saatuja tuloksia vertailtiin keskenään. Kuvankäsittelyalgoritmit on implementoitu Matlab 6.0:n avulla. Pääasiassa käytettiin uusinta Image Processing Toolboxia, joka on versio 3.0. Tämä työn näkökulma on pääasiassa käytäntöön soveltava, koska metsäteollsuus on korkealla tasolla Suomessa ja siellä on paljon alan yrityksiä, joissa tässä työssä kehitettyä menetelmää voidaan hyödyntää.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The results obtained in several yield tests, at an international level (mainly the famous PISA 2003 report, by the OCDE), have raised a multiplicity of performances in order to improve the students' yield regarding problem solving. In this article we set a clear guideline on how problems should be used in Mathematics lessons, not for obtaining better scores in the yield tests but for improving the development of Mathematical thinking in students. From this perspective, the author analyses, through eight reflections, how the concept of problem, transmitted both in the school and from society, influences the students

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Developed from human activities, mathematical knowledge is bound to the world and cultures that men and women experience. One can say that mathematics is rooted in humans’ everyday life, an environment where people reach agreement regarding certain “laws” and principles in mathematics. Through interaction with worldly phenomena and people, children will always gain experience that they can then in turn use to understand future situations. Consequently, the environment in which a child grows up plays an important role in what that child experiences and what possibilities for learning that child has. Variation theory, a branch of phenomenographical research, defines human learning as changes in understanding and acting towards a specific phenomenon. Variation theory implies a focus on that which it is possible to learn in a specific learning situation, since only a limited number of critical aspects of a phenomenon can be simultaneously discerned and focused on. The aim of this study is to discern how toddlers experience and learn mathematics in a daycare environment. The study focuses on what toddlers experience, how their learning experience is formed, and how toddlers use their understanding to master their environment. Twenty-three children were observed videographically during everyday activities. The videographic methodology aims to describe and interpret human actions in natural settings. The children are aged from 1 year, 1 month to 3 years, 9 months. Descriptions of the toddlers’ actions and communication with other children and adults are analyzed phenomenographically in order to discover how the children come to understand the different aspects of mathematics they encounter. The study’s analysis reveals that toddlers encounter various mathematical concepts, similarities and differences, and the relationship between parts and whole. Children form their understanding of such aspects in interaction with other children and adults in their everyday life. The results also show that for a certain type of learning to occur, some critical conditions must exist. Variation, simultaneity, reasonableness and fixed points are critical conditions of learning that appear to be important for toddlers’ learning. These four critical conditions are integral parts of the learning process. How children understand mathematics influences how they use mathematics as a tool to master their surrounding world. The results of the study’s analysis of how children use their understanding of mathematics shows that children use mathematics to uphold societal rules, to describe their surrounding world, and as a tool for problem solving. Accordingly, mathematics can be considered a very important phenomenon that children should come into contact with in different ways and which needs to be recognized as a necessary part of children’s everyday life. Adults working with young children play an important role in setting perimeters for children’s experiences and possibilities to explore mathematical concepts and phenomena. Therefore, this study is significant as regards understanding how children learn mathematics through everyday activities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Notre recherche s’intéresse à la transformation des rapports aux nombres rationnels d’élèves de 1re secondaire présentant des difficultés d’apprentissage. Comme le montrent plusieurs recherches, le défi majeur auquel sont confrontés les enseignants, ainsi que les chercheurs, est de ne pas s’enliser dans le cercle vicieux d’une réduction des enjeux de l’apprentissage des nombres rationnels et des possibilités d’apprentissage de l’élève en difficultés d’apprentissage, cet élève n’ayant pas ainsi la chance de mettre à l’épreuve ses connaissances, d’oser s’engager dans une démarche de construction de connaissances et d’apprécier les effets de son engagement cognitif. Afin de relever ce défi, nous avons misé sur l’intégration harmonieuse de situations problèmes. Il nous a semblé que, dans une démarche d’acculturation, l’approche écologique soit tout indiquée pour penser une «dé-transposition/re-transposition didactique» (Antibi et Brousseau, 2000) et reconstruire une mémoire porteuse d’espoirs (Brousseau et Centeno, 1998). Notre recherche vise à: 1) caractériser la progression des démarches d’acculturation institutionnelle de l’enseignant, du chercheur et des élèves et leurs effets sur les processus d’élaboration et de gestion des situations d’enseignement; 2) préciser l’évolution des connaissances, des habitus et des rapports des élèves aux nombres rationnels. Notre intégration en classe, d’une durée de 6 mois, nous a permis d’apprécier les effets du processus d’acculturation. Nous avons noté des changements importants dans la topogénèse et la chronogénèse des savoirs (Mercier, 1995); alors qu’à notre entrée, l’enseignante adoptait la démarche suivante, soit effectuer un exposé des savoirs et des démarches que les élèves devaient consigner dans leurs notes de cours, afin de pouvoir par la suite s’y référer pour effectuer des exercices et résoudre des problèmes, elle modifiait progressivement cette démarche en proposant des problèmes qui pouvaient permettre aux élèves de coordonner diverses connaissances et de construire ainsi des savoirs auxquels ils pouvaient faire référence dans la construction de leurs notes de cours qu’ils pouvaient par la suite consulter pour effectuer divers exercices. Nous avons également pu apprécier les effets de l’intégration de diverses représentations des nombres rationnels sur l’avancée du temps didactique (Mercier, 1995) et la transformation des rapports et habitus des élèves aux nombres rationnels (Bourdieu, 1980). Ces changements se sont manifestés, entre autres, par : a) un investissement important lors de situations complexes; b) l’adoption de pratiques mathématiques plus attentives aux données numériques et aux relations entre ces données; c) l’apparition de conduites « inusitées » [ex. coordination de divers registres sémiotiques,exploitation de compositions additives/multiplicatives et d’écritures non conventionnelles]. De telles conduites sont similaires à celles observées dans plusieurs recherches effectuées auprès d’une population d’élèves qui ne présentent pas de difficultés d’apprentissage (Moss et Case, 1999). Les résultats de notre recherche soutiennent donc l’importance indéniable de considérer les élèves en difficultés comme étant mathématiquement compétents, comme le soulignent Empson (2003) et Houssart (2002). Il nous semble enfin important de souligner que le travail sur la représentation des nombres rationnels a constitué une niche particulièrement fertile, pour un travail fondamental sur les nombres rationnels, travail qui puisse permettre aux élèves de poursuivre plus harmonieusement leurs apprentissages, les nombres rationnels étant des objets de savoir incontournables.