980 resultados para mRNA processing body


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of a capped mini-exon [spliced leader (SL)] through trans-splicing is essential for the maturation of RNA polymerase (pol) II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA) are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS) region. Additionally, we detected the SL-5' ETS molecule using three distinct methods and located the acceptor site between two known 5' ETS rRNA processing sites (A' and A1) in four different trypanosomatids. Moreover, we detected a polyadenylated 5' ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin), we observed SL-5' ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA) led to the accumulation of SL-5' ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Increased skeletal muscle capillary density would be a logical adaptive mechanism to chronic hypoxic exposure. However, animal studies have yielded conflicting results, and human studies are sparse. Neoformation of capillaries is dependent on endothelial growth factors such as vascular endothelial growth factor (VEGF), a known target gene for hypoxia inducible factor 1 (HIF-1). We hypothesised that prolonged exposure to high altitude increases muscle capillary density and that this can be explained by an enhanced HIF-1alpha expression inducing an increase in VEGF expression. We measured mRNA levels and capillary density in muscle biopsies from vastus lateralis obtained in sea level residents (SLR; N=8) before and after 2 and 8 weeks of exposure to 4100 m altitude and in Bolivian Aymara high-altitude natives exposed to approximately 4100 m altitude (HAN; N=7). The expression of HIF-1alpha or VEGF mRNA was not changed with prolonged hypoxic exposure in SLR, and both genes were similarly expressed in SLR and HAN. In SLR, whole body mass, mean muscle fibre area and capillary to muscle fibre ratio remained unchanged during acclimatization. The capillary to fibre ratio was lower in HAN than in SLR (2.4+/-0.1 vs 3.6+/-0.2; P<0.05). In conclusion, human muscle VEGF mRNA expression and capillary density are not significantly increased by 8 weeks of exposure to high altitude and are not increased in Aymara high-altitude natives compared with sea level residents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological processes are very complex mechanisms, most of them being accompanied by or manifested as signals that reflect their essential characteristics and qualities. The development of diagnostic techniques based on signal and image acquisition from the human body is commonly retained as one of the propelling factors in the advancements in medicine and biosciences recorded in the recent past. It is a fact that the instruments used for biological signal and image recording, like any other acquisition system, are affected by non-idealities which, by different degrees, negatively impact on the accuracy of the recording. This work discusses how it is possible to attenuate, and ideally to remove, these effects, with a particular attention toward ultrasound imaging and extracellular recordings. Original algorithms developed during the Ph.D. research activity will be examined and compared to ones in literature tackling the same problems; results will be drawn on the base of comparative tests on both synthetic and in-vivo acquisitions, evaluating standard metrics in the respective field of application. All the developed algorithms share an adaptive approach to signal analysis, meaning that their behavior is not dependent only on designer choices, but driven by input signal characteristics too. Performance comparisons following the state of the art concerning image quality assessment, contrast gain estimation and resolution gain quantification as well as visual inspection highlighted very good results featured by the proposed ultrasound image deconvolution and restoring algorithms: axial resolution up to 5 times better than algorithms in literature are possible. Concerning extracellular recordings, the results of the proposed denoising technique compared to other signal processing algorithms pointed out an improvement of the state of the art of almost 4 dB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large body of literature documents in both mice and Drosophila the involvement of Insulin pathway in growth regulation, probably due to its role in glucose and lipid import, nutrient storage, and translation of RNAs implicated in ribosome biogenesis (Vanhaesebroeck et al. 2001). Moreover several lines of evidence implicate this pathway as a causal factor in cancer (Sale, 2008; Zeng and Yee 2007; Hursting et al., 2007; Chan et al., 2008). With regards to Myc, studies in cell culture have implied this family of transcription factors as regulators of the cell cycle that are rapidly induced in response to growth factors. Myc is a potent oncogene, rearranged and overexpressed in a wide range of human tumors and necessary during development. Its conditional knock-out in mice results in reduction of body weight due to defect in cell proliferation (Trumpp et al. 2001). Evidence from in vivo studies in Drosophila and mammals suggests a critical function for myc in cell growth regulation (Iritani and Eisenman 1999; Johnston et al. 1999; Kim et al. 2000; de Alboran et al. 2001; Douglas et al. 2001). This role is supported by our analysis of Myc target genes in Drosophila, which include genes involved in RNA binding, processing, ribosome biogenesis and nucleolar function (Orain et al 2003, Bellosta et al., 2005, Hulf et al, 2005). The fact that Insulin signaling and Myc have both been associated with growth control suggests that they may interact with each other. However, genetic evidence suggesting that Insulin signaling regulates Myc in vivo is lacking. In this work we were able to show, for the first time, a direct modulation of dMyc in response to Insulin stimulation/silencing both in vitro and in vivo. Our results suggest that dMyc up-regulation in response to DILPs signaling occurs both at the mRNA and potein level. We believe dMyc protein accumulation after Insulin signaling activation is conditioned to AKT-dependent GSK3β/sgg inactivation. In fact, we were able to demonstate that dMyc protein stabilization through phosphorylation is a conserved feature between Drosophila and vertebrates and requires multiple events. The final phosphorylation step, that results in a non-stable form of dMyc protein, ready to be degraded by the proteasome, is performed by GSK3β/sgg kinase (Sears, 2004). At the same time we demonstrated that CKI family of protein kinase are required to prime dMyc phosphorylation. DILPs and TOR/Nutrient signalings are known to communicate at several levels (Neufeld, 2003). For this reason we further investigated TOR contribution to dMyc-dependent growth regulation. dMyc protein accumulates in S2 cells after aminoacid stimulation, while its mRNA does not seem to be affected upon TORC1 inhibition, suggesting that the Nutrient pathway regulates dMyc mostly post-transcriptionally. In support to this hypothesis, we observed a TORC1-dependent GSK3β/sgg inactivation, further confirming a synergic effect of DILPs and Nutrients on dMyc protein stability. On the other hand, our data show that Rheb but not S6K, both downstream of the TOR kinase, contributes to the dMyc-induced growth of the eye tissue, suggesting that Rheb controls growth independently of S6K.. Moreover, Rheb seems to be able to regulate organ size during development inducing cell death, a mechanism no longer occurring in absence of dmyc. These observations suggest that Rheb might control growth through a new pathway independent of TOR/S6K but still dependent on dMyc. In order to dissect the mechanism of dMyc regulation in response to these events, we analyzed the relative contribution of Rheb, TOR and S6K to dMyc expression, biochemically in S2 cells and in vivo in morphogenetic clones and we further confirmed an interplay between Rheb and Myc that seems to be indipendent from TOR. In this work we clarified the mechanisms that stabilize dMyc protein in vitro and in vivo and we observed for the first time dMyc responsiveness to DILPs and TOR. At the same time, we discovered a new branch of the Nutrient pathway that appears to drive growth through dMyc but indipendently from TOR. We believe our work shed light on the mechanisms cells use to grow or restrain growth in presence/absence of growth promoting cues and for this reason it contributes to understand the physiology of growth control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA methylating compounds are widely used as anti-cancer chemotherapeutics. The pharmaceutical critical DNA lesion induced by these drugs is O6-methylguanine (O6MeG). O6MeG is highly mutagenic and genotoxic, by triggering apoptosis. Despite the potency of O6MeG to induce cell death, the mechanism of O6MeG induced toxicity is still poorly understood. Comparing the response of mouse fibroblasts wild-type (wt) and deficient for ataxia telangiectasia mutant protein (ATM), a kinase responsible for both the recognition and the signalling of DNA double-strand breaks (DSBs), it was shown that ATM deficient cells are more sensitive to the methylating agents N-methyl-N’-nitro-N-nitrosoguanidine (MNNG), methyl methansulfonate (MMS) and the anti-cancer drug temozolomide, in both colony formation and apoptosis assays. This clearly shows that DSBs are involved in O6MeG toxicity. By inactivating the O6MeG repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) with the specific inhibitor O6-benzylguanine (O6BG), ATM wt and deficient cells became more sensitive to MNNG and MMS. The opposite effect was observed when over-expressing MGMT in ATM -/- cells. The results show that O6MeG is the critical DNA lesion causing death in ATM cells following MNNG treatment, and is partially responsible for the toxicity observed following MMS treatment. Furthermore, by inhibiting the ATM kinase activity with caffeine, it was shown that the resistance of wt cells to MNNG was due to the kinase activity of ATM, as wt cells underwent more apoptosis following methylating agent treatment in the presence of caffeine. Apoptosis and caspase-3 activation were late events, starting 48h after treatment. This lends support to the model where O6MeG lesions are converted into DSBs during replication. As ATM wt and deficient cells showed similar G2/M blockage and Chk1 activation following MNNG and MMS treatment, it was concluded that the protective effect of ATM is not due to cell cycle progression control. The hypersensitivity of ATM deficient cells was accompanied by their inability to activate the anti-apoptotic NFkB pathway. In a second part of this study, it was shown that the inflammatory cytokine IL-1 up-regulates the DNA repair gene apurinic endonuclease 2 (APEX2). Up-regulation of APEX2 occurred by transcriptional regulation as it was abrogated by actinomycin D. APEX2 mRNA accumulation was accompanied by increase in APEX2 protein level. IL-1 induced APEX2 expression as well as transfection of cells with APEX2 cDNA positively correlated with a decrease in apoptosis after treatment with genotoxic agents, particularly affecting cell death after H2O2. This indicates an involvement of APEX2 in the BER pathway in cells responding to IL-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recognizing one’s body as separate from the external world plays a crucial role in detecting external events, and thus in planning adequate reactions to them. In addition, recognizing one’s body as distinct from others’ bodies allows remapping the experiences of others onto one’s sensory system, providing improved social understanding. In line with these assumptions, two well-known multisensory mechanisms demonstrated modulations of somatosensation when viewing both one’s own and someone else’s body: the Visual Enhancement of Touch (VET) and the Visual Remapping of Touch (VRT) effects. Vision of the body, in the former, and vision of the body being touched, in the latter, enhance tactile processing. The present dissertation investigated the multisensory nature of these mechanisms and their neural bases. Further experiments compared these effects for viewing one’s own body or viewing another person’s body. These experiments showed important differences in multisensory processing for one’s own body, and for other bodies, and also highlighted interactions between VET and VRT effects. The present experimental evidence demonstrated that a multisensory representation of one’s body – underlie by a high order fronto-parietal network - sends rapid modulatory feedback to primary somatosensory cortex, thus functionally enhancing tactile processing. These effects were highly spatially-specific, and depended on current body position. In contrast, vision of another person’s body can drive mental representations able to modulate tactile perception without any spatial constraint. Finally, these modulatory effects seem sometimes to interact with high order information, such as emotional content of a face. This allows one’s somatosensory system to adequately modulate perception of external events on the body surface, as a function of its interaction with the emotional state expressed by another individual.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The body is represented in the brain at levels that incorporate multisensory information. This thesis focused on interactions between vision and cutaneous sensations (i.e., touch and pain). Experiment 1 revealed that there are partially dissociable pathways for visual enhancement of touch (VET) depending upon whether one sees one’s own body or the body of another person. This indicates that VET, a seeming low-level effect on spatial tactile acuity, is actually sensitive to body identity. Experiments 2-4 explored the effect of viewing one’s own body on pain perception. They demonstrated that viewing the body biases pain intensity judgments irrespective of actual stimulus intensity, and, more importantly, reduces the discriminative capacities of the nociceptive pathway encoding noxious stimulus intensity. The latter effect only occurs if the pain-inducing event itself is not visible, suggesting that viewing the body alone and viewing a stimulus event on the body have distinct effects on cutaneous sensations. Experiment 5 replicated an enhancement of visual remapping of touch (VRT) when viewing fearful human faces being touched, and further demonstrated that VRT does not occur for observed touch on non-human faces, even fearful ones. This suggests that the facial expressions of non-human animals may not be simulated within the somatosensory system of the human observer in the same way that the facial expressions of other humans are. Finally, Experiment 6 examined the enfacement illusion, in which synchronous visuo-tactile inputs cause another’s face to be assimilated into the mental self-face representation. The strength of enfacement was not affected by the other’s facial expression, supporting an asymmetric relationship between processing of facial identity and facial expressions. Together, these studies indicate that multisensory representations of the body in the brain link low-level perceptual processes with the perception of emotional cues and body/face identity, and interact in complex ways depending upon contextual factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants facilitated small number generation, whereas rightward and upward displacement facilitated the generation of large numbers. Influences of leftward and rightward motion were also found for the processing of auditorily presented numbers in a magnitude-judgment task (Experiment 2). Additionally, we investigated the reverse effect of the number-space association (Experiment 3). Participants were displaced leftward or rightward and asked to detect motion direction as fast as possible while small or large numbers were auditorily presented. When motion detection was difficult, leftward motion was detected faster when hearing small number and rightward motion when hearing large number. We provide new evidence that bottom-up vestibular activation is sufficient to interact with the higher-order spatial representation underlying numerical cognition. The results show that action planning or motor activity is not necessary to influence spatial attention. Moreover, our results suggest that self-motion perception and numerical cognition can mutually influence each other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective was to study changes in plasma leptin concentration parallel to changes in the gene expression of lipogenic- and lipolytic-related genes in adipose tissue of dairy cows around parturition. Subcutaneous fat biopsies were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. Blood samples were assayed for concentrations of leptin and non-esterified fatty acids (NEFA). Subcutaneous adipose tissue was analysed for mRNA abundance by real-time qRT-PCR encoding for leptin, adiponectin receptor 1 (AdipoR1), adiponectin receptor 2 (AdipoR2), hormones-sensitive lipase (HSL), perilipin (PLIN), lipoprotein lipase (LPL), acyl-CoA synthase long-chain family member 1 (ACSL1), acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN) and glycerol-3-phosphate dehydrogenase 2 (GPD2). Body weight and body condition score of the cows were lower after parturition than before parturition. The calculated energy balance was negative in week 1 and 5 p.p., with higher negative energy balance in week 1 p.p. compared with that in week 5 p.p. On day 1 p.p., highest concentrations of NEFA (353.3 mumol/l) were detected compared with the other biopsy time-points (210.6 and 107.7 mumol/l, in week 8 a.p., and week 5 p.p. respectively). Reduced plasma concentrations of leptin during p.p. when compared with a.p. would favour increasing metabolic efficiency and energy conservation for mammary function and reconstitution of body reserves. Lower mRNA abundance of ACC and FASN expression on day 1 p.p. compared with other biopsy time-points suggests an attenuation of fatty acid synthesis in subcutaneous adipose tissue shortly after parturition. Gene expression of AdipoR1, AdipoR2, HSL, PLIN, LPL, ACSL1 and GPD2 was unchanged over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the application of full-body radiography to nontraumatic emergency situations. The Lodox Statscan is an X-ray machine capable of imaging the entire body in 13 seconds using linear slit scanning radiography (LSSR). Nontraumatic emergency applications in ventriculoperitoneal (VP) shunt visualisation, emergency room arteriography (ERA), detection of foreign bodies, and paediatric emergency imaging are presented. Reports show that the fast, full-body, and low-dose scanning capabilities of the Lodox system make it well suited to these applications, with the same or better image quality, faster processing times, and lower dose to patients. In particular, the large format scans allowing visualisation of a greater area of anatomy make it well suited to VP shunt monitoring, ERA, and the detection of foreign bodies. Whilst more studies are required, it can be concluded that the Lodox Statscan has the potential for widespread use in these and other nontraumatic emergency radiology applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research reported in this dissertation investigates the processes required to mechanically alloy Pb1-xSnxTe and AgSbTe2 and a method of combining these two end compounds to result in (y)(AgSbTe2)–(1 - y)(Pb1-xSnxTe) thermoelectric materials for power generation applications. In general, traditional melt processing of these alloys has employed high purity materials that are subjected to time and energy intensive processes that result in highly functional material that is not easily reproducible. This research reports the development of mechanical alloying processes using commercially available 99.9% pure elemental powders in order to provide a basis for the economical production of highly functional thermoelectric materials. Though there have been reports of high and low ZT materials fabricated by both melt alloying and mechanical alloying, the processing-structure-properties-performance relationship connecting how the material is made to its resulting functionality is poorly understood. This is particularly true for mechanically alloyed material, motivating an effort to investigate bulk material within the (y)(AgSbTe2)–(1 - y)(Pb1-xSnx- Te) system using the mechanical alloying method. This research adds to the body of knowledge concerning the way in which mechanical alloying can be used to efficiently produce high ZT thermoelectric materials. The processes required to mechanically alloy elemental powders to form Pb1-xSnxTe and AgSbTe2 and to subsequently consolidate the alloyed powder is described. The composition, phases present in the alloy, volume percent, size and spacing of the phases are reported. The room temperature electronic transport properties of electrical conductivity, carrier concentration and carrier mobility are reported for each alloy and the effect of the presence of any secondary phase on the electronic transport properties is described. An mechanical mixing approach for incorporating the end compounds to result in (y)(AgSbTe2)–(1-y)(Pb1-xSnxTe) is described and when 5 vol.% AgSbTe2 was incorporated was found to form a solid solution with the Pb1-xSnxTe phase. An initial attempt to change the carrier concentration of the Pb1-xSnxTe phase was made by adding excess Te and found that the carrier density of the alloys in this work are not sensitive to excess Te. It has been demonstrated using the processing techniques reported in this research that this material system, when appropriately doped, has the potential to perform as highly functional thermoelectric material.