956 resultados para mRNA
Resumo:
β-Site amyloid precursor protein cleaving enzyme (BACE1) is the rate-limiting enzyme for production of Aβ peptides, proposed to drive the pathological changes found in Alzheimer’s disease (AD). Reticulon 3 (RTN3) is a negative modulator of BACE1 (β-secretase) proteolytic activity, while peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) positively regulated BACE1 gene expression in a cell-based assay. This study aimed to analyze RTN3 and PPIL2 mRNA levels in four brain regions from individuals with AD and controls. BACE1 mRNA had been previously quantified in the samples, as had glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE), to track changing cell populations in the tissue. mRNA levels in the human post mortem brain tissue were assayed using quantitative real-time polymerase chain reaction (qPCR) and qbasePLUS, employing validated stably expressed reference genes. No differences in RTN3 or PPIL2 mRNA levels were found in individuals with AD, compared to controls. Both RTN3 and PPIL2 mRNA levels correlated significantly with BACE1 mRNA and all three showed similar disease stage-dependent changes with respect to NSE and GFAP. These findings indicated that the in vitro data demonstrating an effect of PPIL2 on BACE1 expression have functional relevance in vivo. Further research into BACE1-interacting proteins could provide a fruitful approach to the modulation of this protease and consequently Aβ production.
Resumo:
As proteínas existentes nas células são produzidas pelo mecanismo de tradução do mRNA, no qual a informação genética contida nos genes é descodificada em cadeias polipeptídicas. O código genético, que define as regras de descodificação do genoma, minimiza os erros de tradução do mRNA, garantindo a síntese de proteínas com elevada fidelidade. Esta é essencial para a estabilidade do proteoma e para a manutenção e funcionamento dos processos celulares. Em condições fisiológicas normais, os erros da tradução do mRNA ocorrem com frequências que variam de 10-3 a 10-5 erros por codão descodificado. Situações que aumentam este erro basal geralmente estão associadas ao envelhecimento, stresse e a doenças; no entanto, em certos organismos o código genético é traduzido naturalmente com elevado erro, indicando que a síntese de proteínas aberrantes pode de algum modo ser vantajosa. A fim de estudar a resposta celular aos erros de tradução do mRNA, construímos leveduras que incorporam serina no proteoma em resposta a um codão de leucina, usando a expressão constitutiva de um tRNASer mutante. Este fenómeno genético artificial provocou uma forte diminuição da esporulação, da viabilidade e da eficiência de mating, afectando imensamente a reprodução sexual da levedura. Observou-se também uma grande heterogeneidade no tamanho e na forma das células e elevada instabilidade genómica, com o aparecimento de populações poliplóides e aneuplóides. No sentido de clarificar as bases celulares e moleculares daqueles fenótipos e compreender melhor a biologia do erro de tradução do mRNA, construímos também células de levedura que inserem serina em resposta a um codão de leucina de modo indutível e controlado. Utilizaram-se perfis de mRNA total e de mRNA associado a polissomas para elucidar a resposta celular ao erro de tradução do mRNA. Observou-se a indução de genes envolvidos na resposta ao stresse geral, stresse oxidativo e na unfolded protein response (UPR). Um aumento significativo de espécies reactivas de oxigénio (ROS) e um forte impacto negativo na capacidade das células pós-mitóticas re-iniciarem o crescimento foram também observados. Este fenótipo de perda de viabilidade celular foi resgatado por scavangers de ROS, indicando que o stresse oxidativo é a principal causa de morte celular causada pelos erros de tradução. Este estudo levanta a hipótese de que o stresse oxidativo e a acumulação de ROS, ao invés do colapso súbito do proteoma, são as principais causas da degeneração celular e das doenças humanas associadas aos erros de tradução do genoma. ABSTRACT: Proteins are synthesized through the mechanism of translation, which uses the genetic code to transform the nucleic acids based information of the genome into the amino acids based information of the proteome. The genetic code evolved in such a manner that translational errors are kept to a minimum and even when they occur their impact is minimized by similar chemical properties of the amino acids. Protein synthesis fidelity is essential for proteome stability and for functional maintenance of cellular processes. Indeed, under normal physiological conditions, mistranslation occurs at frequencies that range from 10-3 to 10-5 errors per codon decoded. Situations where this basal error frequency increases are usually associated to aging and disease. However, there are some organisms where genetic code errors occur naturally at high level, suggesting that mRNA mistranslation can somehow be beneficial. In order to study the cellular response to mRNA mistranslation, we have engineered single codon mistranslation in yeast cells, using constitutive expression of mutant tRNASer genes. These mistranslating strains inserted serines at leucine-CUG sites on a proteome wide scale due to competition between the wild type tRNALeu with the mutant tRNASer. Such mistranslation event decreased yeast sporulation, viability and mating efficiencies sharply and affected sexual reproduction strongly. High heterogeneity in cell size and shape and high instability in the genome were also observed, with the appearance of some polyploid or aneuploid cell populations. To further study the cellular and molecular basis of those phenotypes and the biology of mRNA mistranslation, we have also engineered inducible mRNA misreading in yeast and used total mRNA and polysome associated mRNA profiling to determine whether codon misreading affects gene expression. Induced mistranslation up-regulated genes involved in the general stress response, oxidative stress and in the unfolded protein response (UPR). A significant increase in reactive oxygen species (ROS) and a strong negative impact on the capacity of post-mitotic cells to re-initiate growth in fresh media were also observed. This cell viability phenotype was rescued by scavengers of ROS, indicating that oxidative stress is the main cause of cell death caused by mRNA mistranslation. This study provides strong support for the hypothesis that oxidative stress and ROS accumulation, rather than sudden proteome collapse or major proteome disruption, are the main cause of the cellular degeneration observed in human diseases associated mRNA mistranslation.
Post-Transcriptional Regulation of BCL2 mRNA by the RNA-Binding Protein ZFP36L1 in Malignant B Cells
Resumo:
The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3′ untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the ‘maximum information coefficient’ (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3′ untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3′ untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells.
Resumo:
Introduction: Plasminogen activator inhibitor type-1 (PAI-1) is a physiological modulator of fibrinolysis. High plasma PAI-1 is associated with the 4G/5G promoter polymorphism and with increased cardiovascular risk. Here we explored the role of platelets in regulating expression of the PAI-1 gene in monocytes. Methods: Blood from PAI-1 4G/5G genotyped volunteers (n=6) was incubated with the platelet GPVI-specific agonist, cross-linked collagen related peptide (CRP-XL), in the presence or absence of Mab 9E1 that blocks the binding of P-selectin to PSGL1. Monocytes were isolated by +ve selection on CD14 beads and monocyte PAI-1 mRNA expression was measured by real-time PCR. Results: Activation of platelets with CRP-XL resulted in platelets binding to >70% of monocytes and was accompanied by >5000-fold induction of PAI-1 mRNA, peaking at 4hrs. PAI-1 expression was independent of the 4G/5G genotype. Blocking the binding of platelets to monocytes enhanced PAI-1 induction (p<0.05 at 4 hrs). Incubation of isolated monocytes with the releasate from CRP-XL stimulated platelets also led to PAI-1 mRNA expression. The platelet secretome contains >100 different proteins. To identify the soluble factor(s) responsible for induction of PAI-1, neutralizing antibodies to likely candidates were added to monocytes incubated with the platelet releasate. Anti- TGF-beta inhibited platelet releasate-mediated PAI-1 mRNA induction by >80%. Monocyte PAI-1 was also induced by stimulation of PSGL-1 with a P-selectin-Fc chimera, in the absence of platelets, which was also blocked by the TGF-beta antibody. Conclusions: These results suggest that platelets induce PAI-1 mRNA in monocytes predominantly via TGF-beta, released from both platelets, and monocytes via activation by PSGL-1 signalling.This stimulation is independent of 4G/5G genotype
Resumo:
Tese de mestrado em Biologia Humana e Ambiente, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015
Resumo:
The lithium-pilocarpine model mimics most features of human temporal lobe epilepsy. Following our prior studies of cerebral metabolic changes, here we explored the expression of transporters for glucose (GLUT1 and GLUT3) and monocarboxylates (MCT1 and MCT2) during and after status epilepticus (SE) induced by lithium-pilocarpine in PN10, PN21, and adult rats. In situ hybridization was used to study the expression of transporter mRNAs during the acute phase (1, 4, 12 and 24h of SE), the latent phase, and the early and late chronic phases. During SE, GLUT1 expression was increased throughout the brain between 1 and 12h of SE, more strongly in adult rats; GLUT3 increased only transiently, at 1 and 4h of SE and mainly in PN10 rats; MCT1 was increased at all ages but 5-10-fold more in adult than in immature rats; MCT2 expression increased mainly in adult rats. At all ages, MCT1 and MCT2 up-regulation was limited to the circuit of seizures while GLUT1 and GLUT3 changes were more widespread. During the latent and chronic phases, the expression of nutrient transporters was normal in PN10 rats. In PN21 rats, GLUT1 was up-regulated in all brain regions. In contrast, in adult rats GLUT1 expression was down-regulated in the piriform cortex, hilus and CA1 as a result of extensive neuronal death. The changes in nutrient transporter expression reported here further support previous findings in other experimental models demonstrating rapid transcriptional responses to marked changes in cerebral energetic/glucose demand.
Resumo:
BACKGROUND: Mantle cell lymphoma is a clinically heterogeneous disease characterized by overexpression of cyclin D1 protein. Blastoid morphology, high proliferation, and secondary genetic aberrations are markers of aggressive behavior. Expression profiling of mantle cell lymphoma revealed that predominance of the 3'UTR-deficient, short cyclin D1 mRNA isoform was associated with high cyclin D1 levels, a high "proliferation signature" and poor prognosis. DESIGN AND METHODS: Sixty-two cases of mantle cell lymphoma were analyzed for cyclin D1 mRNA isoforms and total cyclin D1 levels by real-time reverse transcriptase polymerase chain reaction, and TP53 alterations were assessed by immunohistochemistry and molecular analysis. Results were correlated with proliferation index and clinical outcome. RESULTS: Predominance of the short cyclin D1 mRNA was found in 14 (23%) samples, including four with complete loss of the standard transcript. TP53 alterations were found in 15 (24%) cases. Predominance of 3'UTR-deficient mRNA was significantly associated with high cyclin D1 mRNA levels (P=0.009) and more commonly found in blastoid mantle cell lymphoma (5/11, P=0.060) and cases with a proliferation index of >20% (P=0.026). Both blastoid morphology (11/11, P<0.001) and TP53 alterations (15/15, P<0.001) were significantly correlated with a high proliferation index. A proliferation index of 10% was determined to be a significant threshold for survival in multivariate analysis (P=0.01). CONCLUSIONS: TP53 alterations are strongly associated with a high proliferation index and aggressive behavior in mantle cell lymphoma. Predominance of the 3'UTR-deficient transcript correlates with higher cyclin D1 levels and may be a secondary contributing factor to high proliferation, but failed to reach prognostic significance in this study.
Resumo:
Most human genes undergo alternative splicing and loss of splicing fidelity is associated with disease. Epigenetic silencing of hMLH 1 via promoter cytosine methylation is causally linked to a subset of sporadic non-polyposis colon cancer and is reversible by 5-aza-2' -deoxycytidine treatment. Here I investigated changes in hMLHI mRNA splicing profiles in normal fibroblasts and colon cancer-derived human cell lines. I established the types and frequencies of hMLHI mRNA transcripts generated under baseline conditions, after hydrogen peroxide induced oxidative stress, and in acutely 5-aza-2' -deoxycytidine-treated and stably derepressed cancer cell lines. I found that hMLHI is extensively spliced under all conditions including baseline (50% splice variants), the splice variant distribution changes in response to oxidative stress, and certain splice variants are sensitive to 5- aza-2' -deoxycytidine treatment: Splice variant diversity and frequency of exon 17 skipping correlates with the level of hMLHI promoter methylation suggesting a link between promoter methylation and mRNA splicing.
Resumo:
Le transport et la localisation des ARN messagers permettent de réguler l’expression spatiale et temporelle de facteurs spécifiques impliqués dans la détermination du destin cellulaire, la plasticité synaptique, la polarité cellulaire et la division asymétrique des cellules. Chez S.cerevisiæ, plus de trente transcrits sont transportés activement vers le bourgeon cellulaire. Parmi ces transcrits, l’ARNm ASH1 (asymetric synthesis of HO) est localisé à l’extrémité du bourgeon pendant l’anaphase. Ce processus va entrainer une localisation asymétrique de la protéine Ash1p, qui sera importée uniquement dans le noyau de la cellule fille, où elle entraine le changement de type sexuel. La localisation asymétrique de l’ARNm ASH1, et donc de Ash1p, implique la présence de différents facteurs de localisation. Parmi ces facteurs, les protéines She (She1p/Myo4p, She2p et She3p) et les répresseurs traductionnels (Puf6p, Loc1p et Khd1p) participent à ce mécanisme. La protéine navette She2p est capable de lier l’ARNm ASH1 et va entrainer le ciblage de cet ARNm vers l’extrémité du bourgeon en recrutant le complexe She3p-Myo4p. Des répresseurs traductionnels régulent la traduction de cet ARNm et évitent l’expression ectopique de la protéine Ash1p pendant son transport. Alors que la fonction cytoplasmique de She2p sur la localisation des ARNm est connue, sa fonction nucléaire est encore inconnue. Nous avons montré que She2p contient une séquence de localisation nucléaire non classique qui est essentielle à son import nucléaire médié par l’importine α (Srp1p). L’exclusion de She2p du noyau par mutation de son NLS empêche la liaison de Loc1p et Puf6p sur l’ARNm ASH1, entrainant un défaut de localisation de l’ARNm et de la protéine. Pour étudier plus en détail l’assemblage de la machinerie de localisation des ARNm dans le noyau, nous avons utilisé des techniques d’immunoprécipitation de chromatine afin de suivre le recrutement des facteurs de localisation et des répresseurs traductionnels sur les ARNm naissants. Nous avons montré que She2p est recruté sur le gène ASH1 pendant sa transcription, via son interaction avec l’ARNm ASH1 naissant. Puf6p est également recruté sur ASH1, mais d’une manière dépendante de la présence de She2p. De façon intéressante, nous avons détecté une interaction entre She2p et la plus grande sous-unité de l’ARN polymérase II (Rpb1p). Cette interaction est détectée avec la forme active en élongation de l’ARN polymérase II. Nous avons également démontré que She2p interagit avec le complexe d’élongation de la transcription Spt4p/Spt5p. Une délétion de SPT4 ou une mutation dans SPT5 (Ts spt5) à température restrictive empêche l’interaction entre She2p et Rpb1p, et diminue le recrutement de She2p au gène ASH1, entrainant un défaut de localisation de l’ARNm et un défaut de localisation asymétrique de la protéine Ash1p. De manière globale, nos résultats montrent que les facteurs impliqués dans la localisation cytoplasmique des ARNm et dans leur contrôle traductionnel sont recrutés de façon co-transcriptionnelle sur les ARNm naissants via leur interaction avec la machinerie de transcription, suggèrant un rôle important de la machinerie transcriptionelle dans la localisation des ARNm.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
La quantité de données générée dans le cadre d'étude à grande échelle du réseau d'interaction protéine-protéine dépasse notre capacité à les analyser et à comprendre leur sens; d'une part, par leur complexité et leur volume, et d'un autre part, par la qualité du jeu de donnée produit qui semble bondé de faux positifs et de faux négatifs. Cette dissertation décrit une nouvelle méthode de criblage des interactions physique entre protéines à haut débit chez Saccharomyces cerevisiae, la complémentation de fragments protéiques (PCA). Cette approche est accomplie dans des cellules intactes dans les conditions natives des protéines; sous leur promoteur endogène et dans le respect des contextes de modifications post-traductionnelles et de localisations subcellulaires. Une application biologique de cette méthode a permis de démontrer la capacité de ce système rapporteur à répondre aux questions d'adaptation cellulaire à des stress, comme la famine en nutriments et un traitement à une drogue. Dans le premier chapitre de cette dissertation, nous avons présenté un criblage des paires d'interactions entre les protéines résultant des quelques 6000 cadres de lecture de Saccharomyces cerevisiae. Nous avons identifié 2770 interactions entre 1124 protéines. Nous avons estimé la qualité de notre criblage en le comparant à d'autres banques d'interaction. Nous avons réalisé que la majorité de nos interactions sont nouvelles, alors que le chevauchement avec les données des autres méthodes est large. Nous avons pris cette opportunité pour caractériser les facteurs déterminants dans la détection d'une interaction par PCA. Nous avons remarqué que notre approche est sous une contrainte stérique provenant de la nécessité des fragments rapporteurs à pouvoir se rejoindre dans l'espace cellulaire afin de récupérer l'activité observable de la sonde d'interaction. L'intégration de nos résultats aux connaissances des dynamiques de régulations génétiques et des modifications protéiques nous dirigera vers une meilleure compréhension des processus cellulaires complexes orchestrés aux niveaux moléculaires et structuraux dans les cellules vivantes. Nous avons appliqué notre méthode aux réarrangements dynamiques opérant durant l'adaptation de la cellule à des stress, comme la famine en nutriments et le traitement à une drogue. Cette investigation fait le détail de notre second chapitre. Nous avons déterminé de cette manière que l'équilibre entre les formes phosphorylées et déphosphorylées de l'arginine méthyltransférase de Saccharomyces cerevisiae, Hmt1, régulait du même coup sont assemblage en hexamère et son activité enzymatique. L'activité d'Hmt1 a directement un impact dans la progression du cycle cellulaire durant un stress, stabilisant les transcrits de CLB2 et permettant la synthèse de Cln3p. Nous avons utilisé notre criblage afin de déterminer les régulateurs de la phosphorylation d'Hmt1 dans un contexte de traitement à la rapamycin, un inhibiteur de la kinase cible de la rapamycin (TOR). Nous avons identifié la sous-unité catalytique de la phosphatase PP2a, Pph22, activé par l'inhibition de la kinase TOR et la kinase Dbf2, activé durant l'entrée en mitose de la cellule, comme la phosphatase et la kinase responsable de la modification d'Hmt1 et de ses fonctions de régulations dans le cycle cellulaire. Cette approche peut être généralisée afin d'identifier et de lier mécanistiquement les gènes, incluant ceux n'ayant aucune fonction connue, à tout processus cellulaire, comme les mécanismes régulant l'ARNm.
Resumo:
In the last few years, the development of a plasmid-based reverse genetics system for mammalian reovirus has allowed the production and characterization of mutant viruses. This could be especially significant in the optimization of reovirus strains for virotherapeutic applications, either as gene vectors or oncolytic viruses. The genome of a mutant virus exhibiting increased sensitivity to interferon was completely sequenced and compared with its parental virus. Viruses corresponding to either the parental or mutant viruses were then rescued by reverse genetics and shown to exhibit the expected phenotypes. Systematic rescue of different viruses harboring either of the four parental genes in a mutant virus backbone, or reciprocally, indicated that a single amino acid substitution in one of λ2 methyltransferase domains is the major determinant of the difference in interferon sensitivity between these two viruses.