949 resultados para lifespan extension
Resumo:
Differential growth of thin elastic bodies furnishes a surprisingly simple explanation of the complex and intriguing shapes of many biological systems, such as plant leaves and organs. Similarly, inelastic strains induced by thermal effects or active materials in layered plates are extensively used to control the curvature of thin engineering structures. Such behaviour inspires us to distinguish and to compare two possible modes of differential growth not normally compared to each other, in order to reveal the full range of out-of-plane shapes of an initially flat disk. The first growth mode, frequently employed by engineers, is characterised by direct bending strains through the thickness, and the second mode, mainly apparent in biological systems, is driven by extensional strains of the middle surface. When each mode is considered separately, it is shown that buckling is common to both modes, leading to bistable shapes: growth from bending strains results in a double-curvature limit at buckling, followed by almost developable deformation in which the Gaussian curvature at buckling is conserved; during extensional growth, out-of-plane distortions occur only when the buckling condition is reached, and the Gaussian curvature continues to increase. When both growth modes are present, it is shown that, generally, larger displacements are obtained under in-plane growth when the disk is relatively thick and growth strains are small, and vice versa. It is also shown that shapes can be mono-, bi-, tri- or neutrally stable, depending on the growth strain levels and the material properties: furthermore, it is shown that certain combinations of growth modes result in a free, or natural, response in which the doubly curved shape of disk exactly matches the imposed strains. Such diverse behaviour, in general, may help to realise more effective actuation schemes for engineering structures. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Studies have attributed several functions to the Eaf family, including tumor suppression and eye development. Given the potential association between cancer and development, we set forth to explore Eaf1 and Eaf2/U19 activity in vertebrate embryogenesis, using zebrafish. In situ hybridization revealed similar eaf1 and eaf2/u19 expression patterns. Morpholino-mediated knockdown of either eaf1 or eaf2/u19 expression produced similar morphological changes that could be reversed by ectopic expression of target or reciprocal-target mRNA. However, combination of Eaf1 and Eaf2/U19 (Eafs)-morpholinos increased the severity of defects, suggesting that Eaf1 and Eaf2/U19 only share some functional redundancy. The Eafs knockdown phenotype resembled that of embryos with defects in convergence and extension movements. Indeed, knockdown caused expression pattern changes for convergence and extension movement markers, whereas cell tracing experiments using kaeda mRNA showed a correlation between Eafs knockdown and cell migration defects. Cardiac and pancreatic differentiation markers revealed that Eafs knockdown also disrupted midline convergence of heart and pancreatic organ precursors. Noncanonical Wnt signaling plays a key role in both convergence and extension movements and midline convergence of organ precursors. We found that Eaf1 and Eaf2/U19 maintained expression levels of wnt11 and wnt5. Moreover, wnt11 or wnt5 mRNA partially rescued the convergence and extension movement defects occurring in eafs morphants. Wnt11 and Wnt5 converge on rhoA, so not surprisingly, rhoA mRNA more effectively rescued defects than either wnt11 or wnt5 mRNA alone. However, the ectopic expression of wnt11 and wnt5 did not affect eaf1 and eaf2/u19 expression. These data indicate that eaf1 and eaf2/u19 act upstream of noncanonical Wnt signaling to mediate convergence and extension movements.
Resumo:
We present and test an extension of slow feature analysis as a novel approach to nonlinear blind source separation. The algorithm relies on temporal correlations and iteratively reconstructs a set of statistically independent sources from arbitrary nonlinear instantaneous mixtures. Simulations show that it is able to invert a complicated nonlinear mixture of two audio signals with a high reliability. The algorithm is based on a mathematical analysis of slow feature analysis for the case of input data that are generated from statistically independent sources. © 2014 Henning Sprekeler, Tiziano Zito and Laurenz Wiskott.
Resumo:
The adaptation of robots to changing tasks has been explored in modular self-reconfigurable robot research, where the robot structure is altered by adapting the connectivity of its constituent modules. As these modules are generally complex and large, an upper bound is imposed on the resolution of the built structures. Inspired by growth of plants or animals, robotic body extension (RBE) based on hot melt adhesives allows a robot to additively fabricate and assemble tools, and integrate them into its own body. This enables the robot to achieve tasks which it could not achieve otherwise. The RBE tools are constructed from hot melt adhesives and therefore generally small and only passive. In this paper, we seek to show physical extension of a robotic system in the order of magnitude of the robot, with actuation of integrated body parts, while maintaining the ability of RBE to construct parts with high resolution. Therefore, we present an enhancement of RBE based on hot melt adhesives with modular units, combining the flexibility of RBE with the advantages of simple modular units. We explain the concept of this new approach and demonstrate with two simple unit types, one fully passive and the other containing a single motor, how the physical range of a robot arm can be extended and additional actuation can be added to the robot body. © 2012 IEEE.
Resumo:
The capability of extending body structures is one of the most significant challenges in the robotics research and it has been partially explored in self-reconfigurable robotics. By using such a capability, a robot is able to adaptively change its structure from, for example, a wheel like body shape to a legged one to deal with complexity in the environment. Despite their expectations, the existing mechanisms for extending body structures are still highly complex and the flexibility in self-reconfiguration is still very limited. In order to account for the problems, this paper investigates a novel approach to robotic body extension by employing an unconventional material called Hot Melt Adhesives (HMAs). Because of its thermo-plastic and thermo-adhesive characteristics, this material can be used for additive fabrication based on a simple robotic manipulator while the established structures can be integrated into the robot's own body to accomplish a task which could not have been achieved otherwise. This paper first investigates the HMA material properties and its handling techniques, then evaluates performances of the proposed robotic body extension approach through a case study of a "water scooping" task. © 2012 IEEE.