966 resultados para large underground autonomous vehicles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is directed towards providing an answer to the question, ”Can you control the trajectory of a Lagrangian float?” Being a float that has minimal actuation (only buoyancy control), their horizontal trajectory is dictated through drifting with ocean currents. However, with the appropriate vertical actuation and utilising spatio-temporal variations in water speed and direction, we show here that broad controllabilty results can be met such as waypoint following to keep a float inside of a bay or out of a designated region. This paper extends theory experimen- tally evaluted on horizontally actuated Autonomous Underwater Vehicles (AUVs) for trajectory control utilising ocean forecast models and presents an initial investi- gation into the controllability of these minimally actuated drifting AUVs. Simulated results for offshore coastal and within highly dynamic tidal bays illustrate two tech- niques with the promise for an affirmative answer to the posed question above.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we examine the use of a Kalman filter to aid in the mission planning process for autonomous gliders. Given a set of waypoints defining the planned mission and a prediction of the ocean currents from a regional ocean model, we present an approach to determine the best, constant, time interval at which the glider should surface to maintain a prescribed tracking error, and minimizing time on the ocean surface. We assume basic parameters for the execution of a given mission, and provide the results of the Kalman filter mission planning approach. These results are compared with previous executions of the given mission scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Overview of hotspot identification (HSID)methods 2. Challenges with HSID 3. Bringing crash severity into the ‘mix’ 4. Case Study: Truck Involved Crashes in Arizona 5. Conclusions • Heavy duty trucks have different performance envelopes than passenger cars and have more difficulty weaving, accelerating, and braking • Passenger vehicles have extremely limited sight distance around trucks • Lane and shoulder widths affect truck crash risk more than passenger cars • Using PDOEs to model truck crashes results in a different set of locations to examine for possible engineering and behavioral problems • PDOE models point to higher societal cost locations, whereas frequency models point to higher crash frequency locations • PDOE models are less sensitive to unreported crashes • PDOE models are a great complement to existing practice

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing a persistent presence in the ocean with an AUV to observe temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we propose a strategy that utilizes ocean model predictions to increase the autonomy and control of Lagrangian or profiling floats for precisely this purpose. An A* planner is applied to a local controllability map generated from predictions of ocean currents to compute a path between prescribed waypoints that has the highest likelihood of successful execution. The control to follow the planned path is computed by use of a model predictive controller. This controller is designed to select the best depth for the vehicle to exploit ambient currents to reach the goal waypoint. Mission constraints are employed to simulate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, and show surprising results in the ability of a Lagrangian float to reach a desired location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the continued development of renewable energy generation technologies and increasing pressure to combat the global effects of greenhouse warming, plug-in hybrid electric vehicles (PHEVs) have received worldwide attention, finding applications in North America and Europe. When a large number of PHEVs are introduced into a power system, there will be extensive impacts on power system planning and operation, as well as on electricity market development. It is therefore necessary to properly control PHEV charging and discharging behaviors. Given this background, a new unit commitment model and its solution method that takes into account the optimal PHEV charging and discharging controls is presented in this paper. A 10-unit and 24-hour unit commitment (UC) problem is employed to demonstrate the feasibility and efficiency of the developed method, and the impacts of the wide applications of PHEVs on the operating costs and the emission of the power system are studied. Case studies are also carried out to investigate the impacts of different PHEV penetration levels and different PHEV charging modes on the results of the UC problem. A 100-unit system is employed for further analysis on the impacts of PHEVs on the UC problem in a larger system application. Simulation results demonstrate that the employment of optimized PHEV charging and discharging modes is very helpful for smoothing the load curve profile and enhancing the ability of the power system to accommodate more PHEVs. Furthermore, an optimal Vehicle to Grid (V2G) discharging control provides economic and efficient backups and spinning reserves for the secure and economic operation of the power system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the application of a monocular visual SLAMon a fixed-wing small Unmanned Aerial System (sUAS) capable of simultaneous estimation of aircraft pose and scene structure. We demonstrate the robustness of unconstrained vision alone in producing reliable pose estimates of a sUAS, at altitude. It is ultimately capable of online state estimation feedback for aircraft control and next-best-view estimation for complete map coverage without the use of additional sensors.We explore some of the challenges of visual SLAM from a sUAS including dealing with planar structure, distant scenes and noisy observations. The developed techniques are applied on vision data gathered from a fast-moving fixed-wing radio control aircraft flown over a 1×1km rural area at an altitude of 20-100m.We present both raw Structure from Motion results and a SLAM solution that includes FAB-MAP based loop-closures and graph-optimised pose. Timing information is also presented to demonstrate near online capabilities. We compare the accuracy of the 6-DOF pose estimates to an off-the-shelfGPS aided INS over a 1.7kmtrajectory.We also present output 3D reconstructions of the observed scene structure and texture that demonstrates future applications in autonomous monitoring and surveying.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A software tool (DRONE) has been developed to evaluate road traffic noise in a large area with the consideration of network dynamic traffic flow and the buildings. For more precise estimation of noise in urban network where vehicles are mainly in stop and go running conditions, vehicle sound power level (for acceleration/deceleration cruising and ideal vehicle) is incorporated in DRONE. The calculation performance of DRONE is increased by evaluating the noise in two steps of first estimating the unit noise database and then integrating it with traffic simulation. Details of the process from traffic simulation to contour maps are discussed in the paper and the implementation of DRONE on Tsukuba city is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most visual mapping applications suited to Autonomous Underwater Vehicles (AUVs), stereo visual odometry (VO) is rarely utilised as a pose estimator as imagery is typically of very low framerate due to energy conservation and data storage requirements. This adversely affects the robustness of a vision-based pose estimator and its ability to generate a smooth trajectory. This paper presents a novel VO pipeline for low-overlap imagery from an AUV that utilises constrained motion and integrates magnetometer data in a bi-objective bundle adjustment stage to achieve low-drift pose estimates over large trajectories. We analyse the performance of a standard stereo VO algorithm and compare the results to the modified vo algorithm. Results are demonstrated in a virtual environment in addition to low-overlap imagery gathered from an AUV. The modified VO algorithm shows significantly improved pose accuracy and performance over trajectories of more than 300m. In addition, dense 3D meshes generated from the visual odometry pipeline are presented as a qualitative output of the solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emission rates of ammonia (NH3) are reported for a fleet of 130 light-, medium-, and heavy-duty vehicles recruited in Guangzhou, China. NH3 measurements were performed using Nessler's Reagents spectrophotometry and nationwide standard chassis dynamometer test cycles required by Chinese EPA. Emissions of CO and NOx were also measured during these test cycles. Emission factors of NH3 were calculated for each type of vehicle and used to estimate the total emissions of NH3 from motor vehicles in Guangzhou (GZ) in 2009. Emission factors of NH3 show large variations among different categories of vehicles, with a range from 4 to 138 mg km-1. The average emissions of NH3 in Guangzhou in 2009 were estimated to be 983 t, with a range from 373 to 2136 t. In addition, it was found that vehicles with the highest NH3 emission rates possess the following characteristics: mediumand heavy-duty vehicles, certified with out-of-date emission standards, mid-range odometer readings, and higher CO and NOx emission rates. The results of this study will be useful for developing NH3 emissions inventories in Guangzhou and other urban areas in China.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing a persistent presence in the ocean with an autonomous underwater vehicle (AUV) capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of vehicles that can only control their depth in the water column for such extended deployments. We present a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy and enables general control for these profiling floats. The proposed method is based on experimentally validated techniques for utilizing ocean current models to control autonomous gliders. With the appropriate vertical actuation, and utilizing spatio–temporal variations in water speed and direction, we show that general controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution. A computed depth plan is generated with a model-predictive controller (MPC), and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA, USA, that show encouraging results in the ability of a drifting vehicle to reach a desired location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a monocular vision based autonomous navigation system for Micro Aerial Vehicles (MAVs) in GPS-denied environments. The major drawback of monocular systems is that the depth scale of the scene can not be determined without prior knowledge or other sensors. To address this problem, we minimize a cost function consisting of a drift-free altitude measurement and up-to-scale position estimate obtained using the visual sensor. We evaluate the scale estimator, state estimator and controller performance by comparing with ground truth data acquired using a motion capture system. All resources including source code, tutorial documentation and system models are available online.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experiment in large scale, live, game design and public performance, bringing together participants from across the creative arts to design, deliver and document a project that was both a cooperative learning experience and an experimental public performance. The four month project, funded by the Edge Digital Centre, culminated into a 24 hour ARG event involving over 100 participants in December 2012. Using the premise of a viral outbreak, young enthusiasts auditioned for the roles of Survivor, Zombie, Medic and Military. The main objective was for the Survivors to complete a series of challenges over 24 hours, while the other characters fulfilled their opposing objectives of interference and sabotage supported by both scripted and free-form scenarios staged in constructed scenes throughout the venues. The event was set in the State Library of Queensland and the Edge Digital Centre who granted the project full access, night and day to all areas including public, office and underground areas. These venues were transformed into cinematic settings full of interactive props and various audio-visual effects. The ZomPoc Project was an innovative experiment in writing and directing a large scale, live, public performance, bringing together participants from across the creative industries. In order to design such an event a number of innovative resources were developed exploiting techniques of game design, theatre, film, television and tangible media production. A series of workshops invited local artists, scientists, technicians and engineers to find new ways of collaborating to create networked artifacts, experimental digital works, robotic props, modular set designs, sound effects and unique costuming guided by an innovative multi-platform script developed by Deb Polson. The result of this collaboration was the creation of innovative game and set props, both atmospheric and interactive. Such works animated the space, presented story clues and facilitated interactions between strangers who found themselves sharing a unique experience in unexpected places.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important aspect of robotic path planning for is ensuring that the vehicle is in the best location to collect the data necessary for the problem at hand. Given that features of interest are dynamic and move with oceanic currents, vehicle speed is an important factor in any planning exercises to ensure vehicles are at the right place at the right time. Here, we examine different Gaussian process models to find a suitable predictive kinematic model that enable the speed of an underactuated, autonomous surface vehicle to be accurately predicted given a set of input environmental parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the experimental evaluation of a novel Autonomous Surface Vehicle capable of navigating complex inland water reservoirs and measuring a range of water quality properties and greenhouse gas emissions. The 16 ft long solar powered catamaran is capable of collecting water column profiles whilst in motion. It is also directly integrated with a reservoir scale floating sensor network to allow remote mission uploads, data download and adaptive sampling strategies. This paper describes the onboard vehicle navigation and control algorithms as well as obstacle avoidance strategies. Experimental results are shown demonstrating its ability to maintain track and avoid obstacles on a variety of large-scale missions and under differing weather conditions, as well as its ability to continuously collect various water quality parameters complimenting traditional manual monitoring campaigns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development of a novel vision-based autonomous surface vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an autonomous underwater vehicle, at the water's surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force based docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. Simulated and experimental results are presented demonstrating the autonomous vision- based docking strategy on a proof-of-concept vehicle.