969 resultados para lanthanide sorption
Resumo:
The efficient cleavage of plasmid DNA ( pCAT) by binuclear lanthanide complexes was investigated. At 37 degrees C and neutral pH, both Ho23+L and Er23+L promoted 100% conversion of supercoiled plasmid to the nicked circular form and linear form in 1 h. The corresponding saturation kinetics curve of cleavage of pCAT plasmid by binuclear lanthanide complexes showed the expected increase with catalyst concentration. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The cleavage of adenosine-5'-monophosphate (5'-AMP) and guanosine-5'-monophosphate (S-GMP) by Ce4+ and lanthanide complex of 2-carboxyethylgermanium sesquioxide (Ge-132) in acidic and near neutral conditions was investigated by NMR, HPLC and measuring the liberated inorganic phosphate at 37 degrees C and 50 degrees C, The results showed that 5'-GMP and 5'-AMP was converted to guanine (G), 5'-monophosphate (depurination of 5'-GMP), ribose (depurination and dephosphorylation of 5'-GMP), phosphate and adenine (A), 5'-monophosphate (depurination of 5'-AMP), ribose (depurination and dephosphorylation of 5'-AMP), phosphate respectively by Ce4+. In presence of lanthanide complexes, 5'-GMP and 5'-AMP were converted to guanosine (Guo) and phosphate and adenosine (Ado) and phosphate respectively. The mechanism of cleaving 5'-GMP and 5'-AMP is hydrolytic scission.
Resumo:
The present work revealed that the praseodymium( II ) complex of 2-carboxyethylgermanium sesquioxide (Ge-132) promotes the hydrolysis of the phosphodiester linkages of 3',5'-cyclic adenosine monophosphate (cAMP), 3' , 5'-cyclic deoxyadenosine monophosphate (dcAMP), 5'-adenosine monophosphate(5'-AMP) and 5'-deoxyadenosine monophosphate (5'-dAMP) under mild conditions. Both cAMP and dcAMP were hydrolyzed site-specifically, yielding predominantly 3'-monophosphates, the main products of the cleavage of 5'-AMP and 5'-dAMP included adenosine (Ado). deoxyadenosine (dAdo) and free phosphates respectively. A hydrolytic mechanism was proposed for cAMP, dcAMP, 5'-AMP and 5'-dAMP.
Resumo:
Four novel polymeric lanthanide(III) complexes of two new double betaine derivatives have been synthesized and structurally determined. In [{La-2(L-1)(2)(H2O)(9)}(n)]Cl-6n. 2nH(2)O (1) and [{Tb(L-1)(H2O)(4)}(n)]Cl-3n. nH(2)O (2) (L-1 =4,4'-trimethylenedipyridinio-N,N'-diacetate), the lanthanide(III) ions form a two-dimensional layer in which each pair of lanthanide(III) ions is bridged by two syn-anti mu-carboxylato-O,O' groups. Adjacent layers are cross-linked through hydrogen bonds among aqua ligands, lattice water molecules and chloride ions, to form a three-dimensional network. Isomorphous [{Ln(L-1)(H2O)(4)}(n)]Cl-3n. 5nH(2)O (Ln=La, 3; Ln=Tb, 4; L-2=1,3 bis(pyridinio-4-carboxylato)-propane) each contain a centrosymmetric paddle-wheel-like dimeric unit in which each pair of adjacent metal atoms is bridged by four syn-syn mu-carboxylato-O,O' groups that are oriented nearly perpendicular to each other about the metal-metal axis. Neighboring dimeric subunits are bridged by a pair of flexible LL ligands into a polymeric chain. Adjacent chains are inter-linked by hydrogen bonds among aqua ligands, lattice water molecules and chloride ions into a three-dimensional network. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel europium(III) coordination polymer with a new double betaine derivative, {[Eu(L')(NO3)(H2O)(3)](NO3)(2). 3.5H(2)O}(n) (L-1 = 1,3-bis(pyridinio-4-carboxylato)-propane) has been synthesized and its structure determined. Its luminescence properties have also been studied. The title metal carboxylate coordination polymer contains centrosymmetric dimeric units in which each pair of metal ions is linked by a pair of syn-anti carboxylato-O,O' groups, and each pair of such dimeric units is bridged by the backbones of L-1 ligands to form infinite double chains in the b direction. These metal carboxylate chains are further cross-linked by hydrogen bonds among both coordinated and discrete nitrate anions, aqua ligands and lattice water molecules to form a three-dimensional network. Luminescent data show that the L-1 ligand is a good energy donor and the complex has a relatively long luminescent lifetime.
Resumo:
Four new polymeric lanthanide(III) complexes of nicotinic acid N-oxide and isonicotinic acid N-oxide have been synthesized and structurally determined. In the isomorphous compounds [(Ln(L-1)(3) (H2O)(2))(n)]. 4nH(2)O(HL1 = nicotinic acid N-oxide; Ln = Eu, 1; Ln = Er, 2) the lanthanide(III) ions form infinite double chains along the b direction through the coordination of bridging carboxylate and N-oxide groups. The chains are cross-linked through hydrogen bonds between aqua ligands and uncoordinated N-oxide groups and between aqua ligands and lattice water molecules, to form a three-dimensional network. [(Eu(L-2)(2)-(H2O)(4))(n)](NO3)(n). nH(2)O (HL2 = isonicotinic acid N-oxide, 3) has a polymeric structure in which the europium (III) ions are connected into infinite chains by pairs of syn-syn carboxylate groups. Adjacent chains are interlinked by hydrogen bonds between aqua ligands and N-oxide groups to form a layer parallel to the (100) plane, and such layers are connected by hydrogen bonds between nitrate anions and aqua ligands, and between oxide groups and lattice water molecules, into a three-dimensional network. In [(Er-2(L-2)(4)(H2O)(10))](NO3)(2). H2O, 4, dinuclear units are inter-linked into a three-dimensional network through hydrogen bonding between aqua ligands and N-oxide groups of both bidentate bridging and unidentate L-2 ligands. Factors affecting the formation of coordination chains and dinuclear units are discussed. Luminescence properties of 1 and 3 have also been studied. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Lutetium(III) and lanthanum(III) complexes of 2-carboxyethylgermanium sesquioxide (Ge-132) can hydrolyze the phosphodiester linkage of 3',5'-cyclic adenosine monophosphate (cAMP), 3',5'-cyclic deoxyadenosine monophosphate (dcAMP) and 2',3'-cyclic adenosine monophosphate (2',3'-cAMP). Both cAMP and dcAMP are hydrolyzed with high selectivity, yielding predominantly 3'-monophosphates. 2',3'-cAMP is converted to 3'-AMP and 2'-AMP, the ratio of 3'-AMP to 2'-AMP produced being 1.4.
Resumo:
The structure of phenylalanine transfer ribonucleic acid (tRNA(Phe)) in solution was explored by H-1 NMR spectroscopy to evaluate the effect of lanthanide ion on the structural and conformational change. It was found that La3+ ions possess specific effects on the imino proton region of the H-1 NMR spectra for yeast tRNA(Phe). The dependence of the imino proton spectra of yeast tRNA(Phe) as a function of La3+ concentration was examined, and the results suggest that the tertiary base pair G(15). C-48, which is located in the terminal in the augmented dihydrouridine helix (D-helix), was markedly affected by La3+ (shifted to downfield by as much as 0.35). Base pair U-8. A(14) in yeast tRNA(Phe), which are stacked on G(15). C-48, was also affected by added La3+ when 1 similar to 2 Mg2+ were also present. Another imino proton that may be affected by La3+ in yeast tRNA(Phe) is that of the tertiary base pair G(19). C-56. The assignment of this resonance in yeast tRNA(Phe) is tentative since it is located in the region of highly overlapping resonances beween 12.6 and 12.2. This base pair helps to anchor the D-loop to the T Psi C loop. The binding of La3+ caused conformational change of tRNA, which is responsible for shifts to upfield or downfield in H-1 NMR spectra.
Resumo:
Lanthanide binuclear complexes can accelerate the cleavage of pUC19 plasmid DNA, yielding predominantly linear form. The saturation kinetics of the cleavage of pUC19 was studied. The observed rates with lanthanide binuclear complexes showed the expected increase with the catalyst concentration. The rate of cleavage is greater than that of lanthanide ions alone. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Reaction of YbCl3 with 3 equimolar CpNa (Cp = cyclopentadienide) in THF, followed by treatment with trans-(+/-)-N,N'-bis(salicylidene)-1,2-cyclohexanediamine led to the isolation of first mono(cyclopentadienyl) lanthanide Schiff base complex, [(eta(5)-C5H5)Yb(mu-OC20H20N2O)](2) (mu-THF)(THF) (1). The molecular structure of 1 shows that it is a dimer in which the two [(eta(5)-C5H5)Yb(mu-OC20H20N2O)] units connecting via a bridging THF oxygen and two bridging oxygen atoms from Schiff base ligands. (C) 1998 Elsevier Science S.A.
Resumo:
Electroluminescent devices with PVK film doped with Eu(DBM)(3)(phen) and PBD were fabricated. The device structure of glass substrate/indium-tin-oxide/PPV/PVK:Eu(DBM)(3)-(phen):PBD/Alq(3)/Al was employed. The emissive layer was formed by spin-casting method. A sharply red electroluminescence with a maximum luminance of 114.4 cd/m(2) was achieved at 42 V.
Resumo:
Cp2SmCl(THF) reacts with 0.5 equivalent disodium salts of trans-(+/-)-N,N'-bis(salicylidene)-1,2-cyclohexanediamine give the title complex [(eta(5)-C5H5)Sm(mu-OC20H20N2O)](2)(mu-THF)(THF)(2) (1). X-ray crystal determination shows that the molecule is a dimer, in which two (eta(5)C(5)H(5))Sm(mu-OC20H20N2O) units are connected via a THF oxygen and two bridging oxygen atoms of Schiff base ligands. The average Sm-C distance is 2.78(7) Angstrom, while those of Sm-O (bridging THF oxygen) and Schiff base oxygens are 2.79(3) and 2.43(4) Angstrom; respectively. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
An electrode modified with a polybasic lanthanide heteropoly tungstate/molybdate complex K10H3[Nd(SiMo7W4O39)(2)] entrapped into polypyrrole (PPy) film, denoted as Nd(SiMo7W4)(2)-PPy, exhibits three couples of two-electron redox waves in pH 1-5 buffer solutions. The redox waves are surface-controlled at lower scan rates and diffusion-controlled at higher scan rates. The effects of pH on the electrochemical behavior of Nd(SiMo7W4)(2) in PPy film were investigated in detail and compared with that of Nd(SiMo7W4)(2) in aqueous solution. The various charge states of PPy during its redox process have peculiar effects on the relationship between pH and formal potentials of Nd(SiMo7W4)(2)-PPy at different acidities. The Nd(SiMo7W4)(2)-PPy cme can remarkably catalyze the electrochemical reduction of bromate with good stability. (C) 1997 Elsevier Science Ltd.