960 resultados para k-means


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to typify, through physicochemical parameters, honey from Campos do Jordão’s microrregion, and verify how samples are grouped in accordance with the climatic production seasonality (summer and winter). It were assessed 30 samples of honey from beekeepers located in the cities of Monteiro Lobato, Campos do Jordão, Santo Antonio do Pinhal e São Bento do Sapucaí-SP, regarding both periods of honey production (November to February; July to September, during 2007 and 2008; n = 30). Samples were submitted to physicochemical analysis of total acidity, pH, humidity, water activity, density, aminoacids, ashes, color and electrical conductivity, identifying physicochemical standards of honey samples from both periods of production. Next, we carried out a cluster analysis of data using k-means algorithm, which grouped the samples into two classes (summer and winter). Thus, there was a supervised training of an Artificial Neural Network (ANN) using backpropagation algorithm. According to the analysis, the knowledge gained through the ANN classified the samples with 80% accuracy. It was observed that the ANNs have proved an effective tool to group samples of honey of the region of Campos do Jordao according to their physicochemical characteristics, depending on the different production periods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: This study aimed to classify alcohol-dependent outpatients on the basis of clinical factors and to verify if the resulting types show different treatment retention. Methods: The sample comprised 332 alcoholics that were enrolled in three different pharmacological trials carried out at Sao Paulo University, Brazil. Based on four clinical factors problem drinking onset age, familial alcoholism, alcohol dependence severity, and depression - K-means cluster analysis was performed by using the average silhouette width to determine the number of clusters. A direct logistic regression was performed to analyze the influence of clusters, medication groups, and Alcoholics Anonymous ( AA) attendance in treatment retention. Results: Two clusters were delineated. The cluster characterized by earlier onset age, more familial alcoholism, higher alcoholism severity, and less depression symptoms showed a higher chance of discontinuing the treatment, independently of medications used and AA attendance. Participation in AA was significantly related to treatment retention. Discussion: Health services should broaden the scope of services offered to meet heterogeneous needs of clients, and identify treatment practices and therapists which improve retention. Information about patients' characteristics linked to dropout should be used to make treatment programs more responsive and attractive, combining pharmacological agents with more intensive and diversified psychosocial interventions. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study performed an exploratory analysis of the anthropometrical and morphological muscle variables related to the one-repetition maximum (1RM) performance. In addition, the capacity of these variables to predict the force production was analyzed. 50 active males were submitted to the experimental procedures: vastus lateralis muscle biopsy, quadriceps magnetic resonance imaging, body mass assessment and 1RM test in the leg-press exercise. K-means cluster analysis was performed after obtaining the body mass, sum of the left and right quadriceps muscle cross-sectional area (Sigma CSA), percentage of the type II fibers and the 1RM performance. The number of clusters was defined a priori and then were labeled as high strength performance (HSP1RM) group and low strength performance (LSP1RM) group. Stepwise multiple regressions were performed by means of body mass, Sigma CSA, percentage of the type II fibers and clusters as predictors' variables and 1RM performance as response variable. The clusters mean +/- SD were: 292.8 +/- 52.1 kg, 84.7 +/- 17.9 kg, 19249.7 +/- 1645.5 mm(2) and 50.8 +/- 7.2% for the HSP1RM and 254.0 +/- 51.1 kg, 69.2 +/- 8.1 kg, 15483.1 +/- 1 104.8 mm(2) and 51.7 +/- 6.2 %, for the LSP1RM in the 1RM, body mass, Sigma CSA and muscle fiber type II percentage, respectively. The most important variable in the clusters division was the Sigma CSA. In addition, the Sigma CSA and muscle fiber type II percentage explained the variance in the 1RM performance (Adj R-2 = 0.35, p = 0.0001) for all participants and for the LSP1RM (Adj R-2 = 0.25, p = 0.002). For the HSP1RM, only the Sigma CSA was entered in the model and showed the highest capacity to explain the variance in the 1RM performance (Adj R-2 = 0.38, p = 0.01). As a conclusion, the muscle CSA was the most relevant variable to predict force production in individuals with no strength training background.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To characterize the PI component of long latency auditory evoked potentials (LLAEPs) in cochlear implant users with auditory neuropathy spectrum disorder (ANSD) and determine firstly whether they correlate with speech perception performance and secondly whether they correlate with other variables related to cochlear implant use. Methods: This study was conducted at the Center for Audiological Research at the University of Sao Paulo. The sample included 14 pediatric (4-11 years of age) cochlear implant users with ANSD, of both sexes, with profound prelingual hearing loss. Patients with hypoplasia or agenesis of the auditory nerve were excluded from the study. LLAEPs produced in response to speech stimuli were recorded using a Smart EP USB Jr. system. The subjects' speech perception was evaluated using tests 5 and 6 of the Glendonald Auditory Screening Procedure (GASP). Results: The P-1 component was detected in 12/14 (85.7%) children with ANSD. Latency of the P-1 component correlated with duration of sensorial hearing deprivation (*p = 0.007, r = 0.7278), but not with duration of cochlear implant use. An analysis of groups assigned according to GASP performance (k-means clustering) revealed that aspects of prior central auditory system development reflected in the P-1 component are related to behavioral auditory skills. Conclusions: In children with ANSD using cochlear implants, the P-1 component can serve as a marker of central auditory cortical development and a predictor of the implanted child's speech perception performance. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently there has been a considerable interest in dynamic textures due to the explosive growth of multimedia databases. In addition, dynamic texture appears in a wide range of videos, which makes it very important in applications concerning to model physical phenomena. Thus, dynamic textures have emerged as a new field of investigation that extends the static or spatial textures to the spatio-temporal domain. In this paper, we propose a novel approach for dynamic texture segmentation based on automata theory and k-means algorithm. In this approach, a feature vector is extracted for each pixel by applying deterministic partially self-avoiding walks on three orthogonal planes of the video. Then, these feature vectors are clustered by the well-known k-means algorithm. Although the k-means algorithm has shown interesting results, it only ensures its convergence to a local minimum, which affects the final result of segmentation. In order to overcome this drawback, we compare six methods of initialization of the k-means. The experimental results have demonstrated the effectiveness of our proposed approach compared to the state-of-the-art segmentation methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’analisi istologica riveste un ruolo fondamentale per la pianificazione di eventuali terapie mediche o chirurgiche, fornendo diagnosi sulla base dell’analisi di tessuti, o cellule, prelevati con biopsie o durante operazioni. Se fino ad alcuni anni fa l’analisi veniva fatta direttamente al microscopio, la sempre maggiore diffusione di fotocamere digitali accoppiate consente di operare anche su immagini digitali. Il presente lavoro di tesi ha riguardato lo studio e l’implementazione di un opportuno metodo di segmentazione automatica di immagini istopatologiche, avendo come riferimento esclusivamente ciò che viene visivamente percepito dall’operatore. L’obiettivo è stato quello di costituire uno strumento software semplice da utilizzare ed in grado di assistere l’istopatologo nell’identificazione di regioni percettivamente simili, presenti all’interno dell’immagine istologica, al fine di considerarle per una successiva analisi, oppure di escluderle. Il metodo sviluppato permette di analizzare una ampia varietà di immagini istologiche e di classificarne le regioni esclusivamente in base alla percezione visiva e senza sfruttare alcuna conoscenza a priori riguardante il tessuto biologico analizzato. Nella Tesi viene spiegato il procedimento logico seguito per la progettazione e la realizzazione dell’algoritmo, che ha portato all’adozione dello spazio colore Lab come dominio su cu cui calcolare gli istogrammi. Inoltre, si descrive come un metodo di classificazione non supervisionata utilizzi questi istogrammi per pervenire alla segmentazione delle immagini in classi corrispondenti alla percezione visiva dell’utente. Al fine di valutare l’efficacia dell’algoritmo è stato messo a punto un protocollo ed un sistema di validazione, che ha coinvolto 7 utenti, basato su un data set di 39 immagini, che comprendono una ampia varietà di tessuti biologici acquisiti da diversi dispositivi e a diversi ingrandimenti. Gli esperimenti confermano l’efficacia dell’algoritmo nella maggior parte dei casi, mettendo altresì in evidenza quelle tipologie di immagini in cui le prestazioni risultano non pienamente soddisfacenti.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Il citofluorimetro è uno strumento impiegato in biologia genetica per analizzare dei campioni cellulari: esso, analizza individualmente le cellule contenute in un campione ed estrae, per ciascuna cellula, una serie di proprietà fisiche, feature, che la descrivono. L’obiettivo di questo lavoro è mettere a punto una metodologia integrata che utilizzi tali informazioni modellando, automatizzando ed estendendo alcune procedure che vengono eseguite oggi manualmente dagli esperti del dominio nell’analisi di alcuni parametri dell’eiaculato. Questo richiede lo sviluppo di tecniche biochimiche per la marcatura delle cellule e tecniche informatiche per analizzare il dato. Il primo passo prevede la realizzazione di un classificatore che, sulla base delle feature delle cellule, classifichi e quindi consenta di isolare le cellule di interesse per un particolare esame. Il secondo prevede l'analisi delle cellule di interesse, estraendo delle feature aggregate che possono essere indicatrici di certe patologie. Il requisito è la generazione di un report esplicativo che illustri, nella maniera più opportuna, le conclusioni raggiunte e che possa fungere da sistema di supporto alle decisioni del medico/biologo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atmosphärische Aerosolpartikel wirken in vielerlei Hinsicht auf die Menschen und die Umwelt ein. Eine genaue Charakterisierung der Partikel hilft deren Wirken zu verstehen und dessen Folgen einzuschätzen. Partikel können hinsichtlich ihrer Größe, ihrer Form und ihrer chemischen Zusammensetzung charakterisiert werden. Mit der Laserablationsmassenspektrometrie ist es möglich die Größe und die chemische Zusammensetzung einzelner Aerosolpartikel zu bestimmen. Im Rahmen dieser Arbeit wurde das SPLAT (Single Particle Laser Ablation Time-of-flight mass spectrometer) zur besseren Analyse insbesondere von atmosphärischen Aerosolpartikeln weiterentwickelt. Der Aerosoleinlass wurde dahingehend optimiert, einen möglichst weiten Partikelgrößenbereich (80 nm - 3 µm) in das SPLAT zu transferieren und zu einem feinen Strahl zu bündeln. Eine neue Beschreibung für die Beziehung der Partikelgröße zu ihrer Geschwindigkeit im Vakuum wurde gefunden. Die Justage des Einlasses wurde mithilfe von Schrittmotoren automatisiert. Die optische Detektion der Partikel wurde so verbessert, dass Partikel mit einer Größe < 100 nm erfasst werden können. Aufbauend auf der optischen Detektion und der automatischen Verkippung des Einlasses wurde eine neue Methode zur Charakterisierung des Partikelstrahls entwickelt. Die Steuerelektronik des SPLAT wurde verbessert, so dass die maximale Analysefrequenz nur durch den Ablationslaser begrenzt wird, der höchsten mit etwa 10 Hz ablatieren kann. Durch eine Optimierung des Vakuumsystems wurde der Ionenverlust im Massenspektrometer um den Faktor 4 verringert.rnrnNeben den hardwareseitigen Weiterentwicklungen des SPLAT bestand ein Großteil dieser Arbeit in der Konzipierung und Implementierung einer Softwarelösung zur Analyse der mit dem SPLAT gewonnenen Rohdaten. CRISP (Concise Retrieval of Information from Single Particles) ist ein auf IGOR PRO (Wavemetrics, USA) aufbauendes Softwarepaket, das die effiziente Auswertung der Einzelpartikel Rohdaten erlaubt. CRISP enthält einen neu entwickelten Algorithmus zur automatischen Massenkalibration jedes einzelnen Massenspektrums, inklusive der Unterdrückung von Rauschen und von Problemen mit Signalen die ein intensives Tailing aufweisen. CRISP stellt Methoden zur automatischen Klassifizierung der Partikel zur Verfügung. Implementiert sind k-means, fuzzy-c-means und eine Form der hierarchischen Einteilung auf Basis eines minimal aufspannenden Baumes. CRISP bietet die Möglichkeit die Daten vorzubehandeln, damit die automatische Einteilung der Partikel schneller abläuft und die Ergebnisse eine höhere Qualität aufweisen. Daneben kann CRISP auf einfache Art und Weise Partikel anhand vorgebener Kriterien sortieren. Die CRISP zugrundeliegende Daten- und Infrastruktur wurde in Hinblick auf Wartung und Erweiterbarkeit erstellt. rnrnIm Rahmen der Arbeit wurde das SPLAT in mehreren Kampagnen erfolgreich eingesetzt und die Fähigkeiten von CRISP konnten anhand der gewonnen Datensätze gezeigt werden.rnrnDas SPLAT ist nun in der Lage effizient im Feldeinsatz zur Charakterisierung des atmosphärischen Aerosols betrieben zu werden, während CRISP eine schnelle und gezielte Auswertung der Daten ermöglicht.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atmosphärische Partikel beeinflussen das Klima durch Prozesse wie Streuung, Reflexion und Absorption. Zusätzlich fungiert ein Teil der Aerosolpartikel als Wolkenkondensationskeime (CCN), die sich auf die optischen Eigenschaften sowie die Rückstreukraft der Wolken und folglich den Strahlungshaushalt auswirken. Ob ein Aerosolpartikel Eigenschaften eines Wolkenkondensationskeims aufweist, ist vor allem von der Partikelgröße sowie der chemischen Zusammensetzung abhängig. Daher wurde die Methode der Einzelpartikel-Laserablations-Massenspektrometrie angewandt, die eine größenaufgelöste chemische Analyse von Einzelpartikeln erlaubt und zum Verständnis der ablaufenden multiphasenchemischen Prozesse innerhalb der Wolke beitragen soll.rnIm Rahmen dieser Arbeit wurde zur Charakterisierung von atmosphärischem Aerosol sowie von Wolkenresidualpartikel das Einzelpartikel-Massenspektrometer ALABAMA (Aircraft-based Laser Ablation Aerosol Mass Spectrometer) verwendet. Zusätzlich wurde zur Analyse der Partikelgröße sowie der Anzahlkonzentration ein optischer Partikelzähler betrieben. rnZur Bestimmung einer geeigneten Auswertemethode, die die Einzelpartikelmassenspektren automatisch in Gruppen ähnlich aussehender Spektren sortieren soll, wurden die beiden Algorithmen k-means und fuzzy c-means auf ihrer Richtigkeit überprüft. Es stellte sich heraus, dass beide Algorithmen keine fehlerfreien Ergebnisse lieferten, was u.a. von den Startbedingungen abhängig ist. Der fuzzy c-means lieferte jedoch zuverlässigere Ergebnisse. Darüber hinaus wurden die Massenspektren anhand auftretender charakteristischer chemischer Merkmale (Nitrat, Sulfat, Metalle) analysiert.rnIm Herbst 2010 fand die Feldkampagne HCCT (Hill Cap Cloud Thuringia) im Thüringer Wald statt, bei der die Veränderung von Aerosolpartikeln beim Passieren einer orographischen Wolke sowie ablaufende Prozesse innerhalb der Wolke untersucht wurden. Ein Vergleich der chemischen Zusammensetzung von Hintergrundaerosol und Wolkenresidualpartikeln zeigte, dass die relativen Anteile von Massenspektren der Partikeltypen Ruß und Amine für Wolkenresidualpartikel erhöht waren. Dies lässt sich durch eine gute CCN-Aktivität der intern gemischten Rußpartikel mit Nitrat und Sulfat bzw. auf einen begünstigten Übergang der Aminverbindungen aus der Gas- in die Partikelphase bei hohen relativen Luftfeuchten und tiefen Temperaturen erklären. Darüber hinaus stellte sich heraus, dass bereits mehr als 99% der Partikel des Hintergrundaerosols intern mit Nitrat und/oder Sulfat gemischt waren. Eine detaillierte Analyse des Mischungszustands der Aerosolpartikel zeigte, dass sich sowohl der Nitratgehalt als auch der Sulfatgehalt der Partikel beim Passieren der Wolke erhöhte. rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Il lavoro di tesi si è svolto in collaborazione con il laboratorio di elettrofisiologia, Unità Operativa di Cardiologia, Dipartimento Cardiovascolare, dell’ospedale “S. Maria delle Croci” di Ravenna, Azienda Unità Sanitaria Locale della Romagna, ed ha come obiettivo lo sviluppo di un metodo per l’individuazione dell’atrio sinistro in sequenze di immagini ecografiche intracardiache acquisite durante procedure di ablazione cardiaca transcatetere per il trattamento della fibrillazione atriale. La localizzazione della parete posteriore dell'atrio sinistro in immagini ecocardiografiche intracardiache risulta fondamentale qualora si voglia monitorare la posizione dell'esofago rispetto alla parete stessa per ridurre il rischio di formazione della fistola atrio esofagea. Le immagini derivanti da ecografia intracardiaca sono state acquisite durante la procedura di ablazione cardiaca ed esportate direttamente dall’ecografo in formato Audio Video Interleave (AVI). L’estrazione dei singoli frames è stata eseguita implementando un apposito programma in Matlab, ottenendo così il set di dati su cui implementare il metodo di individuazione della parete atriale. A causa dell’eccessivo rumore presente in alcuni set di dati all’interno della camera atriale, sono stati sviluppati due differenti metodi per il tracciamento automatico del contorno della parete dell’atrio sinistro. Il primo, utilizzato per le immagini più “pulite”, si basa sull’utilizzo del modello Chan-Vese, un metodo di segmentazione level-set region-based, mentre il secondo, efficace in presenza di rumore, sfrutta il metodo di clustering K-means. Entrambi i metodi prevedono l’individuazione automatica dell’atrio, senza che il clinico fornisca informazioni in merito alla posizione dello stesso, e l’utilizzo di operatori morfologici per l’eliminazione di regioni spurie. I risultati così ottenuti sono stati valutati qualitativamente, sovrapponendo il contorno individuato all'immagine ecografica e valutando la bontà del tracciamento. Inoltre per due set di dati, segmentati con i due diversi metodi, è stata eseguita una valutazione quantitativa confrontatoli con il risultato del tracciamento manuale eseguito dal clinico.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Negli ultimi decenni molti autori hanno affrontato varie sfide per quanto riguarda la navigazione autonoma di robot e sono state proposte diverse soluzioni per superare le difficoltà di piattaforme di navigazioni intelligenti. Con questo elaborato vogliamo ricercare gli obiettivi principali della navigazione di robot e tra questi andiamo ad approfondire la stima della posa di un robot o di un veicolo autonomo. La maggior parte dei metodi proposti si basa sul rilevamento del punto di fuga che ricopre un ruolo importante in questo campo. Abbiamo analizzato alcune tecniche che stimassero la posizione del robot in primo luogo nell’ambiente interno e presentiamo in particolare un metodo che risale al punto di fuga basato sulla trasformata di Hough e sul raggruppamento K-means. In secondo luogo presentiamo una descrizione generale di alcuni aspetti della navigazione su strade e su ambienti pedonali.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 1998-2001 Finland suffered the most severe insect outbreak ever recorded, over 500,000 hectares. The outbreak was caused by the common pine sawfly (Diprion pini L.). The outbreak has continued in the study area, Palokangas, ever since. To find a good method to monitor this type of outbreaks, the purpose of this study was to examine the efficacy of multi-temporal ERS-2 and ENVISAT SAR imagery for estimating Scots pine (Pinus sylvestris L.) defoliation. Three methods were tested: unsupervised k-means clustering, supervised linear discriminant analysis (LDA) and logistic regression. In addition, I assessed if harvested areas could be differentiated from the defoliated forest using the same methods. Two different speckle filters were used to determine the effect of filtering on the SAR imagery and subsequent results. The logistic regression performed best, producing a classification accuracy of 81.6% (kappa 0.62) with two classes (no defoliation, >20% defoliation). LDA accuracy was with two classes at best 77.7% (kappa 0.54) and k-means 72.8 (0.46). In general, the largest speckle filter, 5 x 5 image window, performed best. When additional classes were added the accuracy was usually degraded on a step-by-step basis. The results were good, but because of the restrictions in the study they should be confirmed with independent data, before full conclusions can be made that results are reliable. The restrictions include the small size field data and, thus, the problems with accuracy assessment (no separate testing data) as well as the lack of meteorological data from the imaging dates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A non-hierarchical K-means algorithm is used to cluster 47 years (1960–2006) of 10-day HYSPLIT backward trajectories to the Pico Mountain (PM) observatory on a seasonal basis. The resulting cluster centers identify the major transport pathways and collectively comprise a long-term climatology of transport to the observatory. The transport climatology improves our ability to interpret the observations made there and our understanding of pollution source regions to the station and the central North Atlantic region. I determine which pathways dominate transport to the observatory and examine the impacts of these transport patterns on the O3, NOy, NOx, and CO measurements made there during 2001–2006. Transport from the U.S., Canada, and the Atlantic most frequently reaches the station, but Europe, east Africa, and the Pacific can also contribute significantly depending on the season. Transport from Canada was correlated with the North Atlantic Oscillation (NAO) in spring and winter, and transport from the Pacific was uncorrelated with the NAO. The highest CO and O3 are observed during spring. Summer is also characterized by high CO and O3 and the highest NOy and NOx of any season. Previous studies at the station attributed the summer time high CO and O3 to transport of boreal wildfire emissions (for 2002–2004), and boreal fires continued to affect the station during 2005 and 2006. The particle dispersion model FLEXPART was used to calculate anthropogenic and biomass-burning CO tracer values at the station in an attempt to identify the regions responsible for the high CO and O3 observations during spring and biomass-burning impacts in summer.