952 resultados para interoceptive stimulus
Resumo:
The blink reflex is modulated if a weak lead stimulus precedes the blink-eliciting stimulus. In two experiments, we examined the effects of the sensory modality of the lead and blink-eliciting stimuli on blink modulation. Acoustic, visual, or tactile lead stimuli were followed by an acoustic (Experiment 1) or an electrotactile (Experiment 2) blink-eliciting stimulus at lead intervals of -30, 0, 30, 60, 120, 240, 360, and 4,500 msec. The inhibition of blink magnitude at the short (60- to 360-msec) lead intervals and the facilitation of blink magnitude at the long (4,500-msec) lead interval observed for each lead stimulus modality was relatively unaffected by the blink-eliciting stimulus modality. The facilitation of blink magnitude at the very short (-30- to 30-msec) lead intervals was dependent on the combination of the lead and the blink-eliciting stimulus modalities. Modality specific and nonspecific processes operate at different levels of perceptual processing.
Resumo:
The behavior and stability of motor units (MUs) in response to electrical stimulation of different intensities can be assessed with the stimulus-response curve, which is a graphical representation of the size of the compound muscle action potential (CMAP) in relation to stimulus intensity. To examine MU characteristics across the whole stimulus range, the variability of CMAP responses to electrical stimulation, and the differences that occur between normal and disease states, the curve was studied in 11 normal subjects and 16 subjects with amyotrophic lateral sclerosis (ALS). In normal subjects, the curve showed a gradual increase in CMAP size with increasing stimulus intensity, although one or two discrete steps were sometimes observed in the upper half of the curve, indicating the activation of large MUs at higher intensities. In ALS subjects, large discrete steps, due to loss of MUs and collateral sprouting, were frequently present. Variability of the CMAP responses was greater than baseline variability, indicating variability of MU responses, and at certain levels this variability was up to 100 mu Vms. The stimulus-response curve shows differences between normal and ALS subjects and provides information on MU activation and variability throughout the curve.
Resumo:
Prepulse inhibition of the blink reflex is widely applied to investigate information processing deficits in schizophrenia and other psychiatric patient groups. The present experiment investigated the hypothesis that prepulse inhibition reflects a transient process that protects preattentive processing of the prepulse. Participants were presented with pairs of blinkeliciting noises, some preceded by a prepulse at a variable stimulus onset asynchrony (SOA), and were asked to rate the intensity of the second noise relative to the first. Inhibition of blink amplitude was greater for a 110-dB (A) noise than for a 95-dB(A) noise with a 120-ms SOA, whereas there was no difference with a 30-ms SOA. The perceived intensity was also lower for the 110-dB(A) noise than for the 95-dB(A) noise with the 120-ms SOA, but not with the 30-ms SOA. The parallel results support a relationship between prepulse inhibition of response amplitude and perceived intensity. However, the prepulse did not reduce intensity ratings relative to control trials in some conditions, suggesting that prepulse inhibition is not always associated with an attenuation of the perceived impact of the blink-eliciting stimulus.
Resumo:
Recent research on causal learning found (a) that causal judgments reflect either the current predictive value of a conditional stimulus (CS) or an integration across the experimental contingencies used in the entire experiment and (b) that postexperimental judgments, rather than the CS's current predictive value, are likely to reflect this integration. In the current study, the authors examined whether verbal valence ratings were subject to similar integration. Assessments of stimulus valence and contingencies responded similarly to variations of reporting requirements, contingency reversal, and extinction, reflecting either current or integrated values. However, affective learning required more trials to reflect a contingency change than did contingency judgments. The integration of valence assessments across training and the fact that affective learning is slow to reflect contingency changes can provide an alternative interpretation for researchers' previous failures to find an effect of extinction training on verbal reports of CS valence.
Resumo:
Physiological and neuroimaging studies provide evidence to suggest that attentional mechanisms operating within the fronto-parietal network may exert top–down control on early visual areas, priming them for forthcoming sensory events. The believed consequence of such priming is enhanced task performance. Using the technique of magnetoencephalography (MEG), we investigated this possibility by examining whether attention-driven changes in cortical activity are correlated with performance on a line-orientation judgment task. We observed that, approximately 200 ms after a covert attentional shift towards the impending visual stimulus, the level of phase-resetting (transient neural coherence) within the calcarine significantly increased for 2–10 Hz activity. This was followed by a suppression of alpha activity (near 10 Hz) which persisted until the onset of the stimulus. The levels of phase-resetting, alpha suppression and subsequent behavioral performance varied between subjects in a systematic fashion. The magnitudes of phase-resetting and alpha-band power were negatively correlated, with high levels of coherence associated with high levels of performance. We propose that top–down attentional control mechanisms exert their initial effects within the calcarine through a phase-resetting within the 2–10 Hz band, which in turn triggers a suppression of alpha activity, priming early visual areas for incoming information and enhancing behavioral performance.
Resumo:
Parkinson's disease (PD) is associated with enhanced synchronization of neuronal network activity in the beta (15-30 Hz) frequency band across several nuclei of the basal ganglia (BG). Deep brain stimulation of the subthalamic nucleus (STN) appears to reduce this pathological oscillation, thereby alleviating PD symptoms. However, direct stimulation of primary motor cortex (M1) has recently been shown to be effective in reducing symptoms in PD, suggesting a role for cortex in patterning pathological rhythms. Here, we examine the properties of M1 network oscillations in coronal slices taken from rat brain. Oscillations in the high beta frequency range (layer 5, 27.8 +/- 1.1 Hz, n=6) were elicited by co-application of the glutamate receptor agonist kainic acid (400 nM) and muscarinic receptor agonist carbachol (50 mu M). Dual extracellular recordings, local application of tetrodotoxin and recordings in M1 micro-sections indicate that the activity originates within deep layers V/VI. Beta oscillations were unaffected by specific AMPA receptor blockade, abolished by the GABA type A receptor (GABAAR) antagonist picrotoxin and the gap-junction blocker carbenoxolone, and modulated by pentobarbital and zolpidem indicating dependence on networks of GABAergic interneurons and electrical coupling. High frequency stimulation (HFS) at 125 Hz in superficial layers, designed to mimic transdural/transcranial stimulation, generated gamma oscillations in layers 11 and V (incidence 95%, 69.2 +/- 7.3 Hz, n=17) with very fast oscillatory components (VFO; 100-250 Hz). Stimulation at 4 Hz, however, preferentially promoted theta activity (incidence 62.5%, 5.1 +/- 0.6 Hz, n=15) that effected strong amplitude modulation of ongoing beta activity. Stimulation at 20 Hz evoked mixed theta and gamma responses. These data suggest that within M1, evoked theta, gamma and fast oscillations may coexist with and in some cases modulate pharmacologically induced beta oscillations.
Influence of check and field size on the visual evoked magnetic response to a pattern shift stimulus
Resumo:
A decrease in the check size of a pattern shift stimulus increases the latency and amplitude of the visual evoked potential (VEP) P100. In addition, for a given check size, decreasing the size of the stimulus field increases the latency and amplitude of the P100. These results imply that the central regions of the retina make a significant contribution to the generation of the electrical P100. However, the corresponding magnetic P100m may have a different origin. We have studied the effects of check and field size on the P100m in five normal subjects using a DC-Squid, second-order gradiometer. Magnetic responses were recorded at the positive maximum of the P100m over the occipital scalp to six check sizes (10-100') presented in a large (13 degrees 34') and small (5 degrees 14') field and to a large check (100') presented in seven field sizes (1 degree 45' - 15 degrees 10'). No responses were recorded to any check size with a small field. Decreasing the check size presented in a large field increased latency of the P100m by approx. 30 ms while the amplitude of the response decreased with the largest reduction occurring between 70' and 12' checks. Using a large check, latency increased and amplitude decreased as the field size was reduced. The latency changes in response to check and field size were similar to those described for the VEP although the magnitudes of the magnetic changes were greater. Unlike the VEP, amplitude responses were maximal when large checks were presented in a large stimulus field. This suggests that regions outside the central retina make a more significant contribution to the visual evoked magnetic response than they do to the VEP, and that the P100m may be useful clinically in the study of diseases that affect the more peripheral regions of the retina.
Resumo:
The topography of the visual evoked magnetic response to a pattern onset stimulus was studied in four normal subjects. The topography of th CIIm component was consistent when measured on the same subject nine months apart. Full field responses were more variable than half field responses. With decreasing check size, the field pattern changes from a simple distribution with one outgoing and one ingoing area of field to a more complex pattern with in and outgoing fields over each hemisphere of the brain. The source may originate at the pole or from within the calcarine fissure.
Resumo:
Blurring a pattern reversal stimulus increases the latency and decreases the amplitude of the visual evoked potential (VEP) P100 peak. Recording the visual evoked magnetic response (VEMR) is some subjects may therefore be difficult because their spectacles create excessive magnetic noise. Hence, the effect of varying degrees of blur (-5 to +5 D) on the VEMR was investigated in three subjects with 6/6 vision to determine whether refraction with non-magnetic frames and lenses was necessary before magnetic recording. Small (32') and larger (70') checks were studied since there is evidence that blurring small checks has a more significant effect on the VEP compared with large checks. The VEMR was recorded using a single channel dc-SQUID, second order gradiometer in an unshielded laboratory. The latency (ms) and amplitude (fT) of the most prominant positive peak within the first 130 ms (P100M) were measured. Blurring the 32' checks significantly increased latency aand reduced the amplitude of the P100M peak. The resulting response curves were parabolic with minimum latency and maximum amplitude recorded at 0 D. Blurring the 70' check had no significant effect on latency or amplitude. Hence, the magnetic P100M responds similarly to the electrical P100 in response to blur. It would be essential when recording the VEMR that vision is corrected with non-magnetic spectacles especially when small checks are used.