917 resultados para influenza A virus, H1N1 subtype
Resumo:
The first pandemic of the 21(st) century, pandemic H1N1 2009 (pH1N1 2009), emerged from a swine-origin source. Although human infections with swine-origin influenza have been reported previously, none went on to cause a pandemic or indeed any sustained human transmission. In previous pandemics, specific residues in the receptor binding site of the haemagglutinin (HA) protein of influenza have been associated with the ability of the virus to transmit between humans. In the present study we investigated the effect of residue 227 in HA on cell tropism and transmission of pH1N1 2009. In pH1N1 2009 and recent seasonal H1N1 viruses this residue is glutamic acid, whereas in swine influenza it is alanine. Using human airway epithelium, we show a differential cell tropism of pH1N1 2009 compared to pH1N1 2009 E227A and swine influenza suggesting this residue may alter the sialic acid conformer binding preference of the HA. Furthermore, both pH1N1 2009 E227A and swine influenza multi-cycle viral growth was found to be attenuated in comparison to pH1N1 2009 in human airway epithelium. However this altered tropism and viral growth in human airway epithelium did not abrogate respiratory droplet transmission of pH1N1 2009 E227A in ferrets. Thus, acquisition of E at residue 227 was not solely responsible for the ability of pH1N1 2009 to transmit between humans.
Resumo:
Patients and methods: Clinical data from all patients admitted with acute respiratory failure due to novel viral H1N1 infection were reviewed. Lung tissue was submitted for viral and bacteriological analyses by real-time RT-PCR, and autopsy was conducted on all patients who died. Results: Eight patients were admitted, with ages ranging from 55 to 65 years old. There were five patients with solid organ tumors (62.5%) and three with hematological malignancies (37.5%). Five patients required mechanical ventilation and all died. Four patients had bacterial bronchopneumonia. All deaths occurred due to multiple organ failure. A milder form of lung disease was present in the three cases who survived. Lung tissue analysis was performed in all patients and showed diffuse alveolar damage in most patients. Other lung findings were necrotizing bronchiolitis or extensive hemorrhage. Conclusions: H1N1 viral infection in patients with cancer can cause severe illness, resulting in acute respiratory distress syndrome and death. More data are needed to identify predictors of unfavorable evolution in these patients.
Resumo:
Introduction: This study prospectively accessed the immune response to the inactivated influenza vaccine in renal transplant recipients receiving either azathioprine or mycophenolate mofetil (MMF). Side effects were investigated. Methods: Sixty-nine patients received one dose of inactivated trivalent influenza vaccine. Antihemagglutinin (HI) antibody response against each strain was measured before and one to six months after vaccination. Results: Geometric mean HI antibody titers for H1N1 and H3N2 strains increased from 2.57 and 2.44 to 13.45 (p = 0.001) and 7.20 (p < 0.001), respectively. Pre- and post-vaccination protection rates for H1N1 and H3N2 increased from 8.7% to 49.3% (p < 0.001); and 36.3% (p < 0.001) and seroconversion rates were 36% and 25.3%, respectively. There was no response to influenza B. The use of MMF reduced the H1N1 and H3N2 protection rates and the seroconversion rate for the H1N1 strain when compared with the use of azathioprine, and subjects transplanted less than 87 months also had inferior antibody response. Adverse events were mild and there were no change on renal function post-vaccination. Conclusion: Renal transplant patients vaccinated against influenza responded with antibody production for in. uenza A virus strains, but not for in. uenza B. Use of MMF and shorter time from transplantation decreased the immune response to the vaccine.
Resumo:
A recente pandemia de gripe de 2009/2010 causada pelo vírus A (H1N1) pandêmico mostrou um perfil de gravidade diferente da gripe sazonal, pois um percentual considerável de casos graves e fatais ocorreu em indivíduos adultos jovens, sem comorbidade. A virulência dos vírus Influenza A (H1N1) pandêmico resulta de interações protéicas complexas e depende essencialmente de alguns genes virais. O objetivo deste estudo foi caracterizar os genes codificadores da hemaglutinina (H1) e polimerase básica 2 (PB2) do vírus Influenza A (H1N1) pandêmico mediante a obtenção de cepas provenientes de pacientes com gripe procedente da mesorregião metropolitana de Belém-PA. O tamanho amostral foi constituído de 87 amostras aleatórias de ambos os sexos de 0 a 96 anos, com síndrome respiratória aguda grave (SRAG) sem nenhuma comorbidade relatada, no período de maio de 2009 a agosto de 2010. As amostras foram isoladas em cultura de célula MDCK e analisadas por técnicas de biologia molecular que compreenderam três etapas principais: a) extração do RNA viral (RNAv) a partir do sobrenadante celular; b) amplificação do RNAv pela técnica de Reação em Cadeia mediada pela Polimerase precedida de Transcrição Reversa (RT-PCR); c) sequenciamento completo dos genes codificadores da H1 e PB2. Das 87 cepas amplificadas pelo RT-PCR, em 82 tornou-se possível a obtenção e análise de sequências para o gene HA, enquanto que de 81 amostras virais obteve-se sequências para o gene PB2. A análise comparativa das sequências obtidas com a sequência da cepa vacinal (A/California/07/2009(H1N1)) revelou substituições aminoacídicas na HA (P83S; D97N; S203T; D222G; Q293H e I321V) e na PB2 (K340N; K526R e M631L), no entanto sem associação a hospitalização. Ao nível de substituição na HA, a D97N isolada ou associada com a S203T, foi detectada com mais frequência na primeira onda. Já ao nível da PB2 a substituição K526R foi mais encontrada em cepas que circularam na primeira onda, enquanto que, a M631L foi mais evidenciada na segunda. A substituição D222G na HA só foi encontrada em casos de óbitos. Por fim, observou-se uma tendência de alterações nos sítios antigênicos da HA. Sendo assim, a contínua vigilância genética e antigênica do vírus Influenza A (H1N1) pdm em circulação, bem como o compartilhamento de informações é de extrema importância para a melhor recomendação possível para os vírus que entram na composição vacinal evitando assim maior risco de epidemias severas no futuro.
Resumo:
O vírus Influenza é o responsável pela gripe, uma doença que ocasiona milhões de mortes e hospitalizações todos os anos. Nas infecções severas, especialmente em pessoas com risco para complicações, os antivirais tornam-se os principais meios para o manejo clínico, merecendo especial destaque os inibidores da neuraminidase (INAs). De fato, na pandemia de 2009 a Organização Mundial da Saúde (OMS) recomendou o uso do oseltamivir para o tratamento dos doentes. Porém, devido à evolução genética viral, surgiram cepas com mutações no gene codificador da neuraminidase (NA) responsáveis por substituições aminoacídicas que levam à resistência aos fármacos INAs. Assim, a OMS passou a recomendar a vigilância de resistência genotípica para os vírus Influenza. Este trabalho teve como objetivos verificar a ocorrência de mutações no gene codificador da NA dos vírus Influenza A (H1N1) pandêmico que possam estar relacionadas à resistência aos INAs em cepas circulantes na mesorregião metropolitana de Belém no período de maio de 2009 a maio de 2012 e analisar, através da modelagem de proteínas, as substituições aminoacídicas da NA que possam estar influenciando na conformação protéica. Durante o período de estudo, foram recebidas no Laboratório de Vírus Respiratórios 2619 amostras clínicas de pacientes que apresentavam sinais e sintomas de infecção respiratória aguda com até cinco dias de evolução. Para a detecção do genoma viral foi feita a extração do RNA viral, seguida de RT-PCR em tempo real utilizando marcadores específicos para Influenza A H1N1pdm, resultando em 744 (28,4%) positivas. Parte das amostras positivas foram então inoculadas em células MDCK. Para as amostras isoladas em cultura de células, foi feita uma nova extração do RNA viral seguida de uma RT-PCR e semi-nested (PCR) utilizando iniciadores específicos para o gene NA, e posterior análise em sequenciador automático ABI Prism 3130xl (Applied Biosystems). A modelagem molecular da NA foi realizada através dos softwares SWISS-MODEL, MODELLER 9.10, PROCHECK, VERIFY3D e PYMOL. A análise parcial das sequências da neuraminidase nas amostras sequenciadas mostrou que não houve a circulação de cepas de vírus H1N1pdm com a mutação H275Y, a principal envolvida na resistência ao oseltamivir. Porém, em duas amostras foi identificada a substituição D199N que já foi relatada em vários estudos mostrando uma possível associação com o aumento da resistência ao oseltamivir. As amostras de 2012 apresentaram duas substituições (V241I e N369K) que estão relacionadas com um possível papel na compensação dos efeitos negativos causados pela mutação H275Y. A modelagem molecular mostrou que na mutação D199N houve uma alteração na estrutura da proteína NA próxima ao sítio de ligação ao antiviral. A análise filogenética revelou que as amostras de 2012 formaram um cluster isolado, demonstrando uma variação muito mais temporal do que geográfica. Este representa o primeiro estudo de resistência dos vírus Influenza H1N1pdm na mesorregião metropolitana de Belém, representando um importante instrumento para que os profissionais de saúde adotem estratégias mais eficazes no manejo da doença e no desenvolvimento de novos fármacos anti-influenza.
Resumo:
Introduction Vaccination is an effective tool against several infectious agents including influenza. In 2010, the Advisory Committee on Immunization Practices (ACIP) recommended influenza A H1N1/2009 immunization for high risk groups, including juvenile idiopathic arthritis (JIA) patients and more recently the EULAR task force reinforced the importance of vaccination in immunosuppressed pediatric rheumatologic patients. We have recently shown that Influenza A H1N1/2009 vaccination generated protective antibody production with short-term safety profile among 93 JIA patients, but the possible impact of the vaccine in autoimmune response in JIA have not been studied. Therefore, we aimed to assess the production of some autoantibodies generated following influenza H1N1 vaccination in JIA patients. Objectives To assess the autoimmune response and H1N1 serology following influenza H1N1 vaccination in patients with JIA. Methods Cepa A/California/7/2009 (NYMC X-179A) anti-H1N1 was used to vaccinate JIA patients: 1 dose of immunization was given to all participants and those <9yrs of age received a second booster 3 weeks apart. Sera were analyzed before and 3 weeks following complete vaccination. Serology against H1N1 virus was performed by hemagglutination inhibition antibody assay, rheumatoid factor (RF) by latex fixation test, antinuclear antibodies (ANA) by IIF, IgM and IgG anticardiolipin (aCL) by ELISA.Results Among 98 JIA patients that were vaccinated, 58 sera were available for this study. Mean age of 58 JIA patients was 23.9 ± 9.5 yrs, 38 were females and 20 males with mean disease duration of 14.7 ± 10.1 yrs. JIA subtypes were: 33 (57%) poliarticular, 10 (17%) oligoarticular, 6 (10%) systemic and 9 (16%) other. Sixteen patients were off drugs while 42 (72%) were under different pharmacotherapy: 32 (55%) were on 1 DMARD/IS, 10 (17%) on 2 DMARDs/IS, 19 (33%) antimalarials, 29 (50%) MTX, 8(14%) sulfasalazine, 6 (10%) anti-TNFs, 4 (7%) abatacept; no patient was using prednisone >0.5 mg/kg/d. Seroprotection rates against H1N1 influenza increased from 23 to 83% and seroconversion rates were achieved in 78% JIA. Prior to vaccination, 31(53.4%) JIA patients were ANA+, 6(10.3%) RF+, and 4 (7%) IgM + IgG aCL+. After complete H1N1 vaccination, positivity for ANA remained the same whereas 1 patient became negative for IgG aCL, and another for RF, IgM and IgG aCL. One (1.7%) patient turned low titer IgG aCL+. Conclusion Vaccination of JIA patients against pandemic influenza A (H1N1) generated successful protective antibody production without the induction of autoantibody production, except for 1 patient that became positive for low titer IgG aCL, supporting its safety.
Resumo:
The envelope of influenza A viruses contains two large antigens, hemagglutinin (HA) and neuraminidase (NA). Conventional influenza virus vaccines induce neutralizing antibodies that are predominantly directed to the HA globular head, a domain that is subject to extensive antigenic drift. Antibodies directed to NA are induced at much lower levels, probably as a consequence of the immunodominance of the HA antigen. Although antibodies to NA may affect virus release by inhibiting the sialidase function of the glycoprotein, the antigen has been largely neglected in past vaccine design. In this study, we characterized the protective properties of monospecific immune sera that were generated by vaccination with recombinant RNA replicon particles encoding NA. These immune sera inhibited hemagglutination in an NA subtype-specific and HA subtype-independent manner and interfered with infection of MDCK cells. In addition, they inhibited the sialidase activities of various influenza viruses of the same and even different NA subtypes. With this, the anti-NA immune sera inhibited the spread of H5N1 highly pathogenic avian influenza virus and HA/NA-pseudotyped viruses in MDCK cells in a concentration-dependent manner. When chickens were immunized with NA recombinant replicon particles and subsequently infected with low-pathogenic avian influenza virus, inflammatory serum markers were significantly reduced and virus shedding was limited or eliminated. These findings suggest that NA antibodies can inhibit virus dissemination by interfering with both virus attachment and egress. Our results underline the potential of high-quality NA antibodies for controlling influenza virus replication and place emphasis on NA as a vaccine antigen. IMPORTANCE The neuraminidase of influenza A viruses is a sialidase that acts as a receptor-destroying enzyme facilitating the release of progeny virus from infected cells. Here, we demonstrate that monospecific anti-NA immune sera inhibited not only sialidase activity, but also influenza virus hemagglutination and infection of MDCK cells, suggesting that NA antibodies can interfere with virus attachment. Inhibition of both processes, virus release and virus binding, may explain why NA antibodies efficiently blocked virus dissemination in vitro and in vivo. Anti-NA immune sera showed broader reactivity than anti-HA sera in hemagglutination inhibition tests and demonstrated cross-subtype activity in sialidase inhibition tests. These remarkable features of NA antibodies highlight the importance of the NA antigen for the development of next-generation influenza virus vaccines.
Resumo:
El compromiso hepático en la infección por virus Influenza A (H1N1) es muy infrecuente. Presentamos un caso de un paciente varón de 21 años, sano, vacunado, que consulta con un cuadro clásico de gripe. En el examen físico no se palpa hepatoesplenomegalia ni se observa ictericia. Se diagnostica gripe por virus de la influenza A (H1N1) y se inicia tratamiento con oseltamivir oral. Los exámenes de laboratorio revelaron elevación moderada de enzimas hepáticas. Los anticuerpos para virus de la hepatitis A, B y C, virus Epstein-Barr y citomegalovirus (CMV) fueron negativos. El hisopado nasofaríngeo fue positivo para influenza A (H1N1) con prueba de reacción en cadena de polimerasa en tiempo real (PCRRT). Se detectó hepatomegalia homogénea por ecografía abdominal. El cuadro clínico se resolvió en una semana, permaneciendo elevadas las enzimas hepáticas por 21 días. Discutimos los probables mecanismos de la injuria hepática en este caso.
Resumo:
The x-ray structure of a complex of sialic acid (Neu5Ac) with neuraminidase N9 subtype from A/tern/Australia/G70C/75 influenza virus at 4°C has revealed the location of a second Neu5Ac binding site on the surface of the enzyme. At 18°C, only the enzyme active site contains bound Neu5Ac. Neu5Ac binds in the second site in the chair conformation in a similar way to which it binds to hemagglutinin. The residues that interact with Neu5Ac at this second site are mostly conserved in avian strains, but not in human and swine strains, indicating that it has some as-yet-unknown biological function in birds.
Resumo:
Recently, reports have suggested grouping different autoimmune conditions that are triggered by external stimuli as a single syndrome called autoimmune/inflammatory syndrome induced by adjuvants (ASIA). This syndrome is characterized by the appearance of myalgia, myositis, muscle weakness, arthralgia, arthritis, chronic fatigue, sleep disturbances, cognitive impairment and memory loss, and the possible emergence of a demyelinating autoimmune disease caused by systemic exposure after vaccines and adjuvants. In the current study, the authors reported the first Brazilian case of a woman who developed ASIA, which was characterized by arthralgia, changes in inflammatory markers, and chronic fatigue, after the pandemic anti-influenza A/H1N1 vaccine without causing any other rheumatic disease, and it had a positive outcome.
Resumo:
Because of the advent of a new influenza A H1N1. strain, many countries have begun mass immunisation programmes. Awareness of the background rates of possible adverse events will be a crucial part of assessment of possible vaccine safety concerns and will help to separate legitimate safety concerns from events that are temporally associated with but not caused by vaccination. We identified background rates of selected medical events for several countries. Rates of disease events varied by age, sex, method of ascertainment, and geography. Highly visible health conditions, such as Guillain-Barre syndrome, spontaneous abortion, or even death, will occur in coincident temporal association with novel influenza vaccination. On the basis of the reviewed data, if a cohort of 10 million individuals was vaccinated in the UK, 21.5 cases of Guillain-Barre syndrome and 5.75 cases of sudden death would be expected to occur within 6 weeks of vaccination as coincident background cases. In female vaccinees in the USA, 86.3 cases of optic neuritis per 10 million population would be expected within 6 weeks of vaccination. 397 per 1 million vaccinated pregnant women would be predicted to have a spontaneous abortion within 1 day of vaccination.
Resumo:
The immunogenicity and tolerability of virosome and of split influenza vaccines in patients with sickle cell anemia (SS) were evaluated Ninety SS patients from 8 to 34 years old were randomly assigned to receive either virosome (n = 43) or split vaccine (n = 47) Two blood samples were collected, one before and one 4-6 weeks after vaccination Antibodies against viral strains (2006) A/New Caledonia (H1N1), A/California (H3N2), B/Malaysia were determined using the hemagglutinin inhibition test Post-vaccine reactions were recorded over 7 days Seroconversion rates for HI NI, H3N2 and B were 65 1%. 60 4% and 83 7% for virosome vaccine, and 68 0%, 61 7% and 68 0% for split vaccine Seroprotection rates for HI NI, H3N2 e B were 100%. 97 6% and 69.7% for virosome. and 97 8%, 97 8% and 76 6% for split vaccine No severe adverse reactions were recorded Virosome and split vaccines in patients with sickle cell anemia were equally Immunogenic. with high seroconversion and seroprotection rates Both vaccines were well tolerated (C) 2009 Elsevier Ltd All rights reserved
Resumo:
The 2009 pandemic influenza A (H1N1) caused significant morbidity and mortality. Acute lung injury is the hallmark of the disease, but multiple organ system dysfunction can develop and lead to death. Therefore, we sought to investigate whether there was postmortem evidence of H1N1 presence and virus-induced organ injury in autopsy specimens. Five cases in which patients died of influenza A (H1N1) virus infection were studied. The lungs of all patients showed macroscopic and microscopic findings already described for H1N1 (consolidation, edema, hemorrhage, alveolar damage, hyaline membrane, and inflammation), and H1N1 viruses were present in alveolar cells in immunochemical studies. Acute tubular necrosis was present in all cases, but there was no evidence of direct virus-induced kidney injury. Nevertheless, H1N1 viruses were found in the cytoplasm of glomerular macrophages in the kidneys of 4 patients. Therefore, our data provide strong evidence that H1N1 presence is not restricted to the lungs.
Resumo:
Using the Roche LightCycler we developed a real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay using the Influenza A LightCycler RT-PCR (FA-LC-RTPCR) for the rapid detection of Influenza A. The assay was used to examine 178 nasopharyngeal aspirate (NPA) samples, from patients with clinically recognised respiratory tract infection, for the presence of Influenza A RNA. The results were then compared to a testing algorithm combining direct immunofluorescent assy (DFA) and a culture augmented DFA (CA-DFA) assay. In total, 76 (43%) specimens were positive and 98 (55%) specimens were negative by both the FA-LC-RTPCR and the DFA and CA-DFA algorithm. In addition, the FA-LC-RTPCR detected a further 4 (2%) positive specimens, which were confirmed by a conventional RT-PCR method. The high level of sensitivity and specificity, combined with the rapid turnaround time for results, makes the LC-RT-PCR assay suitable for the detection of Influenza A in clinical specimens.