985 resultados para indirizzo :: 069 :: Didattico
Resumo:
Nella presente tesi si cerca di tratteggiare lo sviluppo storico della disciplina trigonometrica: da fedele alleata di astronomia e geodesia, appendice naturale di effemeridi e manuali topografici, fino all’emancipazione a scienza autonoma, branca indipendente della matematica pura. Un cammino lungo ed affascinante che attraversa i millenni: dalle prime tracce individuabili nella civiltà egizia ed in quella mesopotamica fino alla definitiva fioritura e successiva sistemazione logica della trigonometria degli archi e delle corde, avvenuta nel mondo greco ed alessandrino. Poi il rinascimento culturale europeo, passando attraverso la tradizione indiana e la mediazione arabo-islamica. Quindi il preludio alla trigonometria moderna grazie al contributo di matematici del calibro di Viète e Napier, sino alla scoperta delle sue innumerevoli applicazioni alla fisica durante la gloriosa Rivoluzione Scientifica. Infine la nascita e lo studio sistematico delle funzioni circolari, colonne portanti dell’analisi, ad opera di Eulero ed ancora la Rivoluzione Francese con Carnot e Fourier. Ampio spazio, inoltre, è dedicato a problemi ed applicazioni pratiche tratte da manuali per la scuola secondaria largamente diffusi intorno alla metà del secolo scorso.
Resumo:
L'evoluzione del concetto di infinito nella storia presenta difficoltà che ancora oggi non sono sono state eliminate: la nostra mente è adattata al finito, per questo quando ha a che fare con oggetti troppo grandi o troppo piccoli, essa crea delle immagini che le permettono di vederli e manipolarli. Bisogna tuttavia stare attenti alle insidie che questi modelli nascondono, perché attribuiscono agli enti originali alcune proprietà fuorvianti, che ci portano a conclusioni distorte.
Resumo:
In this thesis I analyzed the microwave tomography method to recognize breast can- cer. I study how identify the dielectric permittivity, the Helmoltz equation parameter used to model the real physic problem. Through a non linear least squares method I solve a problem of parameters identification; I show the theoric approach and the devel- opment to reach the results. I use the Levenberg-Marquardt algorithm, applied on COMSOL software to multiphysic models; so I do numerical proofs on semplified test problems compared to the specific real problem to solve.
Resumo:
In questo lavoro si studia l'insieme dei punti di una curva ellittica, visto come gruppo abeliano, con particolare attenzione al caso dei punti a coordinate razionali quando la curva è data da un'equazione a coefficienti razionali. Dopo aver visto le proprietà della legge di gruppo su una cubica liscia piana razionale in forma normale, vengono presentati alcuni risultati sul sottogruppo dei punti razionali, fra i quali i teoremi di Nagell-Lutz e di Mordell, che permettono di dare una descrizione di tale sottogruppo.
Resumo:
Argomento della presente tesi è il calcolo integrale. Nella prima parte dell'elaborato viene descritta l'evoluzione storica delle idee presenti già nella matematica antica, che conducono infine alla creazione del calcolo integrale vero e proprio, nei fondamentali lavori di Newton e Leibniz. Segue una sintetica descrizione delle sistematizzazioni formali della teoria dell'integrazione, ad opera di Riemann e successivamente Lebesgue, oltre alla generalizzazione dell'integrale di Riemann ideata da Sieltjes, di grande importanza, fra l'altro, nel calcolo delle probabilità. Si dà poi conto degli spazi funzionali con norme integrali (L^p, spazi di Sobolev). L'ultimo capitolo è dedicato all'insegnamento del calcolo integrale nella scuola secondaria in Italia, e alla sua evoluzione dall'inizio del XX secolo a oggi.
Resumo:
In questa tesi si mostrano alcune applicazioni degli integrali ellittici nella meccanica Hamiltoniana, allo scopo di risolvere i sistemi integrabili. Vengono descritte le funzioni ellittiche, in particolare la funzione ellittica di Weierstrass, ed elenchiamo i tipi di integrali ellittici costruendoli dalle funzioni di Weierstrass. Dopo aver considerato le basi della meccanica Hamiltoniana ed il teorema di Arnold Liouville, studiamo un esempio preso dal libro di Moser-Integrable Hamiltonian Systems and Spectral Theory, dove si prendono in considerazione i sistemi integrabili lungo la geodetica di un'ellissoide, e il sistema di Von Neumann. In particolare vediamo che nel caso n=2 abbiamo un integrale ellittico.
Resumo:
L'obiettivo di questa tesi è lo studio del legame tra la volatilità implicita e la volatilità attuale del titolo sottostante. In particolare, si cercherà di capire quanto conosciamo della volatilità del titolo sottostante se si osserva sul mercato un numero sufficiente di opzioni Call e Put Europee che dipendono da questo sottostante. Tale relazione è oggetto d'interesse pratico per gli attori dei mercati delle opzioni: si tratta di due grandezze fondamentali usate per prezzare i derivati finanziari. L'approccio usato verte alla dinamica dei processi e permetterà di mettere in luce nuove caratteristiche della volatilità implicita, nonché trovare una sua approssimazione. La dinamica del suddetto parametro è cruciale nelle operazioni di copertura e gestione del rischio per i portafogli di opzioni. Avendo a disposizione un modello per la dinamica della volatilità implicita, è possibile calcolare in maniera consistente il vega risk. La dinamica è altrettanto importante per la copertura delle opzioni esotiche, quali le opzioni barrier. Per riuscire a raggiungere il fine predisposto, si considera un modello di mercato libero da arbitraggi, il processo spot continuo e alcune assunzioni di non degenerazione. Ciononostante, si cerca di fare meno assunzioni possibili circa la dinamica del suddetto processo, in modo da trattare un modello di mercato generale, in particolare non completo. Attraverso questo approccio si potrà constatare che dai prezzi delle Call si riescono a ricavare interessanti informazioni riguardanti lo spot. Infatti, a partire da alcune condizioni di regolarità, si riesce a ricavare la dinamica della volatilità spot, osservando la dinamica della volatilità implicita.
Resumo:
Analisi storica dei legami tra matematica e musica dall'antica Grecia fino alla scala cromatica moderna. Descrizione del progetto Doremat, progetto che vede l'insegnamento della matematica con la musica, e delle analisi fatte in aula sui fattori affettivi.
Resumo:
Aus: La Speranza ; N. 10