999 resultados para inclusões diferenciais lineares
Resumo:
Sistemas dinâmicos são todos os sistemas que evoluem no tempo, qualquer que seja a sua natureza, isto é, sistemas fisícos, biológicos, químicos, sociais, económicos, etc.. Esta evoluçãoo pode ser descrita (modelada) por equaçõess de diferenças, uma vez que esse tempo é muitas vezes medido em intervalos discretos. As equações de diferenças aparecem também quando se estuda métodos para a discretização de equações diferenciais. Assim, este trabalho tem por principal objectivo estudar as soluções de alguns tipos de equações de diferenças. Para isso, começa-se por introduzir o conceito de diferença e a sua relação com as equações de diferenças. Em seguida, determina-se a solução geral das todas as equações lineares de primeira ordem, bem como o estudo do seu comportamento assimptótico. Prossegue-se, desenvolvendo as principais técnicas para determinar a soluçãoo de equações de diferenças lineares de qualquer ordem. Em particular, estudam-se as equações com coeficientes constantes. Depois de se desenvolver a teoria básica dos sistemas lineares de equações de diferenças, particulariza-se aos sistemas lineares autónomos,com apenas duas variáveis dependentes, fazendo assim o estudo do comportamento das soluções no plano de fases. Por fim, utiliza-se a transformada Z como uma ferramenta que permite resolver equações de diferenças, em especial as equações de tipo convolução.
Resumo:
Na unfolding method of linear intercept distributions and secction área distribution was implemented for structures with spherical grains. Although the unfolding routine depends on the grain shape, structures with spheroidal grains can also be treated by this routine. Grains of non-spheroidal shape can be treated only as approximation. A software was developed with two parts. The first part calculates the probability matrix. The second part uses this matrix and minimizes the chi-square. The results are presented with any number of size classes as required. The probability matrix was determined by means of the linear intercept and section area distributions created by computer simulation. Using curve fittings the probability matrix for spheres of any sizes could be determined. Two kinds of tests were carried out to prove the efficiency of the Technique. The theoretical tests represent ideal cases. The software was able to exactly find the proposed grain size distribution. In the second test, a structure was simulated in computer and images of its slices were used to produce the corresponding linear intercept the section area distributions. These distributions were then unfolded. This test simulates better reality. The results show deviations from the real size distribution. This deviations are caused by statistic fluctuation. The unfolding of the linear intercept distribution works perfectly, but the unfolding of section area distribution does not work due to a failure in the chi-square minimization. The minimization method uses a matrix inversion routine. The matrix generated by this procedure cannot be inverted. Other minimization method must be used
Resumo:
Knowledge of the leaf area plant are needed for agronomic and physiological studies involving plant growth. The aim of this study was to obtain a mathematical model using linear measures of leaf dimensions, which will allow the estimation of leaf area of Crotalaria juncea L. Correlation studies were conducted involving real leaf area (Sf) and leaf length (C), maximum leaf width (L) and the product between C and L. All tested models (linear, exponential or geometric) provided good estimation of leaf area (above 87%). The better fit was attained using linear model, passing or not through the origin. From a practical viewpoint, it is suggested to use the linear model involving the C and L product, using a linear coefficient equal to zero. Estimation of leaf area of Crotalaria juncea L. can be obtained using the model Sf = 0.7160 x (C*L) with a determination coefficient of 0.9712.
Resumo:
The aim of this research was to obtain a mathematical equation to estimate the leaf area of Ageratum conyzoides based on linear measures of its leaf blade. Correlation studies were done using real leaf area (Sf), leaf length (C) and the maximum leaf width (L), in about 200 leaf blades. The evaluated statistic models were: linear Y = a + bx; simple linear Y = bx; geometric Y = ax(b); and exponential Y = ab(x). The evaluated linear, exponential and geometric models can be used in the billygoat weed leaf area estimation. In the practical sense, the simple linear regression model is suggested using the C*L multiplication product and taking the linear coefficient equal to zero, because it showed weak-alteration on sum of squares error and satisfactory residual analysis. Thus, an estimate of A conyzoides leaf area can be obtained using the equation Sf = 0.6789*(C*L), with a determination coefficient of 0.8630.
Resumo:
Com o objetivo de obter uma equação matemática que, através de parâmetros lineares dimensionais das folhas, permitisse a estimativa da área foliar de Cissampelos glaberrima, estudaram-se relações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L) perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar da falsa parreira-brava. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, usando-se a equação de regressão Sf = 0,7878 x (C x L), que equivale a tomar 78,78% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com coeficiente de correlação de 0,9307.
Resumo:
Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Brachiaria plantaginea, estudaram-se relações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar do capim-marmelada. do ponto de vista prático, deve-se optar pela equação linear simples, envolvendo o produto C x L, usando-se a equação de regressão Sf = 0,7338 x (C x L), o que equivale a tomar 73,38% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com um coeficiente de determinação de 0,8754.
Resumo:
Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permitisse a estimativa da área foliar de Ipomoea hederifolia e Ipomoea nil, estudaram-se correlações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. Todas as - equações exponenciais, geométricas ou lineares simples - permitiram boas estimativas da área foliar. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de I. hederifolia pode ser feita pela fórmula Sf = 0,7583 x (C x L), ou seja, 75,83% do produto entre o comprimento ao longo da nervura principal e a largura máxima, ao passo que, para I. nil, a estimativa da área foliar pode ser feita pela fórmula Sf = 0,6122 x (C x L), ou seja, 61,22% do produto entre o comprimento ao longo da nervura principal e a largura máxima da folha.
Resumo:
A estimativa da área foliar pode auxiliar na compreensão de relações de interferência entre plantas daninhas e cultivadas. Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Sida cordifolia e Sida rhombifolia, estudaram-se as correlações entre área foliar real (Af) e parâmetros dimensionais do limbo foliar, como o comprimento (C) ao longo da nervura principal e a largura máxima (L) perpendicular à nervura principal. Foram analisados 200 limbos foliares de cada espécie, coletados em diferentes agroecossistemas na Universidade Estadual Paulista, campus de Jaboticabal. Os modelos estatísticos utilizados foram linear: Y = a + bx; linear simples: Y = bx; geométrico: Y = ax b; e exponencial: Y = ab x. Todos os modelos analisados podem ser empregados para estimação da área foliar de S. cordifolia e S. rhombifolia. Sugere-se optar pela equação linear simples, envolvendo o produto C*L, considerando-se o coeficiente linear igual a zero, em função da praticidade desta. Desse modo, a estimativa da área foliar de S. cordifolia pode ser obtida pela fórmula Af = 0,7878*(C*L), com coeficiente de determinação de 0,9307, enquanto para S. rhombifolia a estimativa da área foliar pode ser obtida pela fórmula Af = 0,6423*(C*L), com coeficiente de determinação de 0,9711.
Resumo:
Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Typha latifolia, estudaram-se relações entre a área foliar real (Sf) e parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar da taboa. do ponto de vista prático, sugere-se optar pela equação linear simples que envolve o produto C x L, usando-se a equação de regressão Sf = 0,9651 x (C x L), que equivale a tomar 96,51% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com um coeficiente de determinação de 0,9411.
Resumo:
Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Tridax procumbens, estudaram-se relações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar da erva-de-touro. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, usando-se a equação de regressão Sf = 0,6008 x (C x L), que equivale a tomar 60,08% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com um coeficiente de determinação de 0,8731.
Resumo:
Esta pesquisa teve como objetivo obter uma equação, por meio de medidas lineares dimensionais das folhas, que permitisse a estimativa da área foliar de Momordica charantia e Pyrostegia venusta. Entre maio e dezembro de 2007, foram estudadas as correlações entre a área folia real (Sf) e as medidas dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L) perpendicular à nervura principal. Todas as equações, exponenciais geométricas ou lineares simples, permitiram boas estimativas da área foliar. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de Momordica charantia pode ser feita pela fórmula Sf = 0,4963 x (C x L), e a de Pyrostegia venusta, por Sf = 0,6649 x (C x L).
Resumo:
This study aims to analyze the income differentials by gender in Brazil, in the years 1976, 1987, 1996 and 2009. Specifically, there are two objectives. First, attempt to analyze the importance of the effects of composition and wage structure in the job market. In the second, to verify which socioeconomic variables explain the effects of composition and wage structure in the job market. The information in this study was obtained from the microdata of Pesquisa Nacional por Amostra de Domicílios (PNAD) regarding the respective years. In the first stage of the methodology we used: the index of income distribution Theil-T; the income gap decompositions proposed by Oaxaca (1973) and Blinder (1973); and Firpo et al. (2007). In the second stage we applied the RIF regression method (Recentered Influence Function) of Firpo et al. (2007). The results show that income inequality is higher among men than among women in the country. It was observed that the component of inequality between people of the same gender represented the largest share in the decomposition of income inequality between genders. It was found, in the decomposition of the average income, a downward trend of income gap, but the differential remains favorable to the men. We noticed that the impact of the composition effect in reducing the gap was offset by the positive effect of wage structure. Regarding the distribution quantis, income differential between genres appeared greater at the bottom, in the years 1976, 1987 and 2009; and at the top of the distribution, in 1996 featuring, respectively, the sticky floor and glass ceiling effects in Brazil. As for the decomposition of the RIF, it turns out that the composition effect assisted in the downfall of the income gap between 1976 and 2009, but was offset by the positive effect of the wage structure in quantis 10th, 50th, and 90th. The main socioeconomic variables influenced the drop in income gap were: the composition effect, the manual labor occupations, service sector and low-grade and high school, and the wage structure effect, schooling low and high experience professional and technical occupations and urban centers
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a new multi-model technique of dentification in ANFIS for nonlinear systems. In this technique, the structure used is of the fuzzy Takagi-Sugeno of which the consequences are local linear models that represent the system of different points of operation and the precursors are membership functions whose adjustments are realized by the learning phase of the neuro-fuzzy ANFIS technique. The models that represent the system at different points of the operation can be found with linearization techniques like, for example, the Least Squares method that is robust against sounds and of simple application. The fuzzy system is responsible for informing the proportion of each model that should be utilized, using the membership functions. The membership functions can be adjusted by ANFIS with the use of neural network algorithms, like the back propagation error type, in such a way that the models found for each area are correctly interpolated and define an action of each model for possible entries into the system. In multi-models, the definition of action of models is known as metrics and, since this paper is based on ANFIS, it shall be denominated in ANFIS metrics. This way, ANFIS metrics is utilized to interpolate various models, composing a system to be identified. Differing from the traditional ANFIS, the created technique necessarily represents the system in various well defined regions by unaltered models whose pondered activation as per the membership functions. The selection of regions for the application of the Least Squares method is realized manually from the graphic analysis of the system behavior or from the physical characteristics of the plant. This selection serves as a base to initiate the linear model defining technique and generating the initial configuration of the membership functions. The experiments are conducted in a teaching tank, with multiple sections, designed and created to show the characteristics of the technique. The results from this tank illustrate the performance reached by the technique in task of identifying, utilizing configurations of ANFIS, comparing the developed technique with various models of simple metrics and comparing with the NNARX technique, also adapted to identification