326 resultados para immunogenicity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat-labile toxins (LT) encompass at least 16 natural polymorphic toxin variants expressed by wild-type enterotoxigenic Escherichia coli (ETEC) strains isolated from human beings, but only one specific form, produced by the reference ETEC H10407 strain (LT1), has been intensively studied either as a virulence-associated factor or as a mucosal/transcutaneous adjuvant. In the present study, we carried out a biological/immunological characterization of a natural LT variant (LT2) with four polymorphic sites at the A subunit (S190L, G196D, K213E, and S224T) and one at the B subunit (T75A). The results indicated that purified LT2, in comparison with LT1, displayed similar in vitro toxic activities (adenosine 3`,5`-cyclic monophosphate accumulation) on mammalian cells and in vivo immunogenicity following delivery via the oral route. Nonetheless, the LT2 variant showed increased adjuvant action to ovalbumin when delivered to mice via the transcutaneous route while antibodies raised in mice immunized with LT2 displayed enhanced affinity and neutralization activity to LT1 and LT2. Taken together, the results indicate that the two most frequent LT polymorphic forms expressed by wild ETEC strains share similar biological features, but differ with regard to their immunological properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streptococcus pyogenes causes severe invasive infections: the post-streptococcal sequelae of acute rheumatic fever (RF) and rheumatic heart disease (RHD), acute glomerulonephritis, and uncomplicated pharyngitis and pyoderma. Efforts to produce a vaccine against S. pyogenes began several decades ago, and different models have been proposed. Here, we describe the methodology used in the development of a new vaccine model, consisting of both T and B protective epitopes constructed as synthetic peptides and recombinant proteins. Two adjuvants were tested in an experimental inbred mouse model: a classical Freund`s adjuvant and a new adjuvant (AFCo1) that induces mucosal immune responses and is obtained by calcium precipitation of a proteoliposome derived from the outer membrane of Neisseria meningitides B. The StreptInCor vaccine epitope co-administrated with AFCo1 adjuvant induced mucosal (IgA) and systemic (IgG) antibodies as preferential Th1-mediated immune responses. No autoimmune reactions were observed, suggesting that the vaccine epitope is safe. (c) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2006, the first report of a nanostructured material as adjuvant was described establishing the effectiveness of the ordered mesoporous SBA-15 silica as an immune adjuvant. The present study evaluated the SBA-15 capacity to modulate the immune responsiveness of High and Low responder mice immunized with BSA encapsulated/adsorbed in SBA-15 by the intramuscular or oral route and the adjuvant effect was compared with the responsiveness induced by BSA in aluminum hydroxide salts or emulsified in Incomplete Freund adjuvant. These results demonstrate the ability of the non-toxic SBA-15 nanoparticles to increase the immunogenicity and repair the responsiveness of the constitutively low responder individuals inducing both the IgG2a and the IgG1 isotypes, independently of the immune cell committed and conditioning the low phenotype. This new adjuvant may reveal novel therapeutic targets for immune modulation and vaccine design. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: This study prospectively accessed the immune response to the inactivated influenza vaccine in renal transplant recipients receiving either azathioprine or mycophenolate mofetil (MMF). Side effects were investigated. Methods: Sixty-nine patients received one dose of inactivated trivalent influenza vaccine. Antihemagglutinin (HI) antibody response against each strain was measured before and one to six months after vaccination. Results: Geometric mean HI antibody titers for H1N1 and H3N2 strains increased from 2.57 and 2.44 to 13.45 (p = 0.001) and 7.20 (p < 0.001), respectively. Pre- and post-vaccination protection rates for H1N1 and H3N2 increased from 8.7% to 49.3% (p < 0.001); and 36.3% (p < 0.001) and seroconversion rates were 36% and 25.3%, respectively. There was no response to influenza B. The use of MMF reduced the H1N1 and H3N2 protection rates and the seroconversion rate for the H1N1 strain when compared with the use of azathioprine, and subjects transplanted less than 87 months also had inferior antibody response. Adverse events were mild and there were no change on renal function post-vaccination. Conclusion: Renal transplant patients vaccinated against influenza responded with antibody production for in. uenza A virus strains, but not for in. uenza B. Use of MMF and shorter time from transplantation decreased the immune response to the vaccine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aptamers, also known as chemical antibodies, are short single-stranded DNA, RNA or peptide molecules. These molecules can fold into complex three-dimensional structures and bind to target molecules with high affinity and specificity. The nucleic acid aptamers are selected from combinatorial libraries by an iterative in vitro selection procedure known as systematic evolution of ligands by exponential enrichment (SELEX). As a new class of therapeutics and drug targeting entities, bivalent and multivalent aptamer-based molecules are emerging as highly attractive alternatives to monoclonal antibodies as targeted therapeutics.

Aptamers have several advantages, offering the possibility of overcoming limitations of antibodies: 1) they can be selected against toxic or non-immunogenic targets; 2) aptamers can be chemically modified by using modified nucleotides to enhance their stability in biological fluids or via incorporating reporter molecules, radioisotopes and functional groups for their detection and immobilization; 3) they have very low immunogenicity; 4) they display high stability at room temperature, in extreme pH, or solvent; 5) once selected, they can be chemically synthesized free from cell- culturederived contaminants, and they can be manufactured at any time, in large amounts, at relatively low cost and reproducibly; 6) they are smaller and thus can diffuse more rapidly into tissues and organs, leading to faster targeting in drug delivery; 7) they have lower molecular weight that can lead to faster body clearance, resulting in a low background noise for imaging and minimizing the radiation dose to the patient in diagnostic imaging. Thus, the high selectivity and sensitivity, ease of screening and production, chemical versatility as well as stability make aptamers a class of highly attractive agents for the development of novel therapeutics, targeted drug delivery vehicles and molecular imaging.

In the review, we will discuss the latest technological advances in developing aptamers, its application as a novel class of drug on its own, as well as in surface functionalization of both polymer nanoparticles or nanoliposomes in the treatment of cancer, viral and autoimmune diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the site of release of a model vaccine antigen from plant cells and the corresponding induced immune response. Three plant tissues (leaf, fruit and hairy root) and two formulations (aqueous and lipid) were compared in two mouse trials. A developed technique that enabled detection of antigen release by plant cells determined that antigen release occurred at early sites of the gastrointestinal tract when delivered in leaf material and at later sites when delivered in hairy roots. Lipid formulations delayed antigen release from all plant materials tested. While encapsulation in the plant cell provided some protection of the antigen in the gastrointestinal tract and influenced antigen release, formulation medium was also an important consideration with regard to vaccine delivery and immunogenicity. Systemic immune responses induced from the orally delivered vaccine benefited from late release of antigen in the mouse gastrointestinal tract. The influences to the mucosal immune response induced by these vaccines were too complex to be determined by studies performed here with no clear trend regarding plant tissue site of release or formulation medium. Expression and delivery of the model antigen in plant material prepared in an aqueous formulation provided the optimal systemic and mucosal, antigen-specific immune responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short single-stranded oligonucleotides called aptamers, often termed as chemical antibodies, have been developed as powerful alternatives to traditional antibodies with respect to their obvious advantages like high specificity and affinity, longer shelf-life, easier manufacturing protocol, freedom to introduce chemical modifications for further improvement, etc. Reiterative selection process of aptamers over 10-15 cycles starting from a large initial pool of random nucleotide sequences renders them with high binding affinity, thereby making them extremely specific for their targets. Aptamer-based detection systems are well investigated and likely to displace primitive detection systems. Aptamer chimeras (combination of aptamers with another aptamer or biomacromolecule or chemical moiety) have the potential activity of both the parent molecules, and thus hold the capability to perform diverse functions at the same time. Owing to their extremely high specificity and lack of immunogenicity or pathogenicity, a number of other aptamers have recently entered clinical trials and have garnered favorable attention from pharmaceutical companies. Promising results from the clinical trials provide new hope to change the conventional style of therapy. Aptamers have attained high therapeutic relevance in a short time as compared to synthetic drugs and/or other modes of therapy. This review follows the various trends in aptamer technology including production, selection, modifications and success in clinical fields. It focusses largely on the various applications of aptamers which mainly depend upon their selection procedures. The review also sheds light on various modifications and chimerizations that have been implemented in order to improve the stability and functioning of the aptamers, including introduction of locked nucleic acids (LNAs). The application of various aptamers in detection systems has been discussed elaborately in order to stress on their role as efficient diagnostic agents. The key aspect of this review is focused on success of aptamers on the basis of their performance in clinical trials for various diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene therapy, which involves the transfer of nucleic acid into target cells in patients, has become one of the most important and widely explored strategies to treat a variety of diseases, such as cancer, infectious diseases and genetic disorders. Relative to viral vectors that have high immunogenicity, toxicity and oncogenicity, non-viral vectors have gained a lot of interest in recent years. This is largely due to their ability to mimic viral vector features including the capacity to overcome extra- and intra-cellular barriers and to enhance transfection efficiency. Polyethyleneimine (PEI) has been extensively investigated as a non-viral vector. This cationic polymer, which is able to compact nucleic acid through electrostatic interactions and to transport it across the negatively charged cell membranes, has been shown to effectively transfect nucleic acid into different cell lines. Moreover, entrapment of gold nanoparticles (Au NPs) into such an amine-terminated polymer template has been shown to significantly enhance gene transfection efficiency. In this work, a novel non-viral nucleic acid vector system for enhanced and targeted nucleic acid delivery applications was developed. The system was based on the functionalization of PEI with folic acid (FA; for targeted delivery to cancer cells overexpressing FA receptors on their surface) using polyethylene glycol (PEG) as a linker molecule. This was followed by the preparation of PEI-entrapped Au NPs (Au PENPs; for enhancement of transfection efficiency). In the synthesis process, the primary amines of PEI were first partially modified with fluorescein isothiocyanate (FI) using a molar ratio of 1:7. The formed PEI-FI conjugate was then further modified with either PEG or PEGylated FA using a molar ratio of 1:1. This process was finally followed by entrapment of Au NPs into the modified polymers. The resulting conjugates and Au PENPs were characterized by several techniques, namely Nuclear Magnetic Resonance, Dynamic Light Scattering and Ultraviolet-Visible Spectroscopy, to assess their physicochemical properties. In the cell biology studies, the synthesized conjugates and their respective Au PENPs were shown to be non-toxic towards A2780 human ovarian carcinoma cells. The role of these materials as gene delivery agents was lastly evaluated. In the gene delivery studies, the A2780 cells were successfully transfected with plasmid DNA using the different vector systems. However, FA-modification and Au NPs entrapment were not determinant factors for improved transfection efficiency. In the gene silencing studies, on the other hand, the Au PENPs were shown to effectively deliver small interfering RNA, thereby reducing the expression of the B-cell lymphoma 2 protein. Based on these results, we can say that the systems synthesized in this work show potential for enhanced and targeted gene therapy applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Para se detectar diferenças imuno-antigênicas entre 8 amostras de P. brasiliensis isoladas de diferentes áreas endêmicas (Botucatu: Pb 1, 2 e 3; São Paulo: Pb: 18, 192 e 265; Venezuela: Pb 9 e 73), esutdaram-se: 1. A reatividade antigênica de cada amostra nas reações de imunofluorescência indireta (II) e de imunodifusão dupla em gel de agar (ID) contra painel de 20 soros controles positivos para paracoccidioidomicose; 2. A capacidade de induzir resposta imune humoral (medida por imunodifusão) e celular (medida pelo teste de coxim plantar) em camundongos imunizados com an-tígenos de cada amostra. Observamos: 1. As amostras Pb 265 e Pb 9 mostraram-se mais reativas na II; 2. Os antígenos das amostras Pb 192 e Pb 73 foram significativamente mais reativas na ID; 3. Estes dados demonstram diferenças de antigenicidade entre estas amostras; 4. A amostra Pb 18 mostrou baixo poder indutor de resposta imune celular e alta capacidade de indução de resposta imune humoral em camundongos imunizados, revelando dissociação de sua imunogenicidade. Estas diferenças podem indicar a existência de cepas distintas do fungo ou refletir modificações do parasita no hospedeiro ou du rante seu cultivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of gamma radiation from Co-60 (2000 Gy) to attenuate the toxic effects of Bothrops jararacussu venom was investigated on mouse neuromuscular preparations in vitro. A comparative study between the effects of native and irradiated venoms was performed on both phrenic-diaphragm (PD) and extensor digitorum longus (EDL) preparations by means of myographic, biochemical and morphological techniques. Native venom (10 and 20 mug/ml) induced a concentration-dependent paralysis of both directly and indirectly evoked contractions on PD preparations. At 20 mug/ml, it also caused a pronounced myotoxic effect on the EDL muscle preparation that was characterized by an increase of creatine kinase release and by several morphological changes of this preparation. By contrast, irradiated venom, even at concentrations as high as 40 mug/ml, induced neither paralyzing nor myotoxic effects. It was concluded that Co-60 gamma radiation is able to abolish both the paralyzing and the myotoxic effects of B. jararacussu venom on the mouse neuromuscular junction. These findings support the hypothesis that gamma radiation could be an important toot to improve antisera production by reducing toxicity while preserving immunogenicity. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three larval stages of Dermatobia hominis (Linnaeus) have been evaluated for their immunogenicity by ELISA and immunodiffusion (ID) using sera from experimentally infested rabbits. During a primary infestation, first instar D. hominis were found to cause most reaction and allowed the earliest diagnosis by ELISA. An inhibition of the antibody response against second and third instars was observed. The inhibition disappeared after departure of the larvae from the host. In experimentally immunized hosts the antibody response, following challenge, was highest against second and third instar antigens. Antibody remained elevated during the infestation but fell immediately after the larvae had left the host.