942 resultados para generalized multiscale entropy
Resumo:
A 4 A electron-density map of Pf1 filamentous bacterial virus has been calculated from x-ray fiber diffraction data by using the maximum-entropy method. This method produces a map that is free of features due to noise in the data and enables incomplete isomorphous-derivative phase information to be supplemented by information about the nature of the solution. The map shows gently curved (banana-shaped) rods of density about 70 A long, oriented roughly parallel to the virion axis but slewing by about 1/6th turn while running from a radius of 28 A to one of 13 A. Within these rods, there is a helical periodicity with a pitch of 5 to 6 A. We interpret these rods to be the helical subunits of the virion. The position of strongly diffracted intensity on the x-ray fiber pattern shows that the basic helix of the virion is right handed and that neighboring nearly parallel protein helices cross one another in an unusual negative sense.
Resumo:
Studies on compressibility and shear strength aspects are the concern of many investigators concerned with partly saturated soils. In soil engineering connected with partly saturated soils, there are no approaches connecting soil states and stress conditions. The present investigation is essentially a step in this direction. A generalized state parameter, identified with regard to material states is shown to be related to the compressibility and shear strength. The involved parameters are simple and normally determined in routine investigations. The advantage of this approach is that changes in soil states due to external stress conditions and the associated changes in strength can be examined particularly when different types of soils are involved.
Resumo:
We address the long-standing problem of the origin of acoustic emission commonly observed during plastic deformation. We propose a framework to deal with the widely separated time scales of collective dislocation dynamics and elastic degrees of freedom to explain the nature of acoustic emission observed during the Portevin-Le Chatelier effect. The Ananthakrishna model is used as it explains most generic features of the phenomenon. Our results show that while acoustic emission bursts correlated with stress drops are well separated for the type C serrations, these bursts merge to form nearly continuous acoustic signals with overriding bursts for the propagating type A bands.
Resumo:
We present a method for measuring the local velocities and first-order variations in velocities in a timevarying image. The scheme is an extension of the generalized gradient model that encompasses the local variation of velocity within a local patch of the image. Motion within a patch is analyzed in parallel by 42 different spatiotemporal filters derived from 6 linearly independent spatiotemporal kernels. No constraints are imposed on the image structure, and there is no need for smoothness constraints on the velocity field. The aperture problem does not arise so long as there is some two-dimensional structure in the patch being analyzed. Among the advantages of the scheme is that there is no requirement to calculate second or higher derivatives of the image function. This makes the scheme robust in the presence of noise. The spatiotemporal kernels are of simple form, involving Gaussian functions, and are biologically plausible receptive fields. The validity of the scheme is demonstrated by application to both synthetic and real video images sequences and by direct comparison with another recently published scheme Biol. Cybern. 63, 185 (1990)] for the measurement of complex optical flow.
Resumo:
We present a method for measuring the local velocities and first-order variations in velocities in a time-varying image. The scheme is an extension of the generalized gradient model that encompasses the local variation of velocity within a local patch of the image. Motion within a patch is analyzed in parallel by 42 different spatiotemporal filters derived from 6 linearly independent spatiotemporal kernels. No constraints are imposed on the image structure, and there is no need for smoothness constraints on the velocity field. The aperture problem does not arise so long as there is some two-dimensional structure in the patch being analyzed. Among the advantages of the scheme is that there is no requirement to calculate second or higher derivatives of the image function. This makes the scheme robust in the presence of noise. The spatiotemporal kernels are of simple form, involving Gaussian functions, and are biologically plausible receptive fields. The validity of the scheme is demonstrated by application to both synthetic and real video images sequences and by direct comparison with another recently published scheme [Biol. Cybern. 63, 185 (1990)] for the measurement of complex optical flow.
Resumo:
The capturability of a realistic generalized true proportional navigation (RGTPN) guidance law, against a nonmaneuvering target, is analyzed. The RGTPN law is obtained by relaxing the somewhat unrealistic assumption of constant closing velocity, made in all earlier studies on generalized true proportional navigation (GTPN), and incorporating the actual time-varying value in the guidance law. Closed-form solutions for the complete capture region of RGTPN is obtained in terms of both zero and acceptable non-zero miss distances. It is shown that the capture region of RGTPN in the initial relative velocity space is significantly smaller than that of GTPN, for reasonable values of navigation constant (N) and angular direction (eta) of the missile commanded latax. However, for certain values of N and eta, capturability of RGTPN is found to be better. It is also shown that if in one of the versions of GTPN, which uses constant values of both the closing velocity and the line-of-sight (LOS) angular velocity in the guidance law, the corresponding realistic time-varying quantities are used, the capture region actually expands to cover the whole of the initial relative velocity space. A number of examples are given to compare the capture performance of RGTPN with other versions of the GTPN guidance laws.
Resumo:
The well-known linear relationship (T?S# =??H# +?, where 1 >? > 0,? > 0) between the entropy (?S#) and the enthalpy (?H#) of activation for reactions in polar liquids is investigated by using a molecular theory. An explicit derivation of this linear relation from first principles is presented for an outersphere charge transfer reaction. The derivation offers microscopic interpretation for the quantities? and?. It has also been possible to make connection with and justify the arguments of Bell put forward many years ago.
Resumo:
The paper examines the suitability of the generalized data rule in training artificial neural networks (ANN) for damage identification in structures. Several multilayer perceptron architectures are investigated for a typical bridge truss structure with simulated damage stares generated randomly. The training samples have been generated in terms of measurable structural parameters (displacements and strains) at suitable selected locations in the structure. Issues related to the performance of the network with reference to hidden layers and hidden. neurons are examined. Some heuristics are proposed for the design of neural networks for damage identification in structures. These are further supported by an investigation conducted on five other bridge truss configurations.
Resumo:
We use the Thomas-Fermi method to examine the thermodynamics of particles obeying Haldane exclusion statistics. Specifically, we study Calogero-Sutherland particles placed in a given external potential in one dimension. For the case of a simple harmonic potential (constant density of states), we obtain the exact one-particle spatial density and a {\it closed} form for the equation of state at finite temperature, which are both new results. We then solve the problem of particles in a $x^{2/3} ~$ potential (linear density of states) and show that Bose-Einstein condensation does not occur for any statistics other than bosons.
Resumo:
Analytical solutions of the generalized Bloch equations for an arbitrary set of initial values of the x, y, and z magnetization components are given in the rotating frame. The solutions involve the decoupling of the three coupled differential equations such that a third-order differential equation in each magnetization variable is obtained. In contrast to the previously reported solutions given by Torrey, the present attempt paves the way for more direct physical insight into the behavior of each magnetization component. Special cases have been discussed that highlight the utility of the general solutions. Representative trajectories of magnetization components are given, illustrating their behavior with respect to the values of off-resonance and initial conditions. (C) 1995 Academic Press, Inc.
Resumo:
A two-time scale stochastic approximation algorithm is proposed for simulation-based parametric optimization of hidden Markov models, as an alternative to the traditional approaches to ''infinitesimal perturbation analysis.'' Its convergence is analyzed, and a queueing example is presented.
Resumo:
The two-phase thermodynamic (2PT) model is used to determine the absolute entropy and energy of carbon dioxide over a wide range of conditions from molecular dynamics trajectories. The 2PT method determines the thermodynamic properties by applying the proper statistical mechanical partition function to the normal modes of a fluid. The vibrational density of state (DoS), obtained from the Fourier transform of the velocity autocorrelation function, converges quickly, allowing the free energy, entropy, and other thermodynamic properties to be determined from short 20-ps MD trajectories. The anharmonic effects in the vibrations are accounted for by the broadening of the normal modes into bands from sampling the velocities over the trajectory. The low frequency diffusive modes, which lead to finite DoS at zero frequency, are accounted for by considering the DoS as a superposition of gas-phase and solid-phase components (two phases). The analytical decomposition of the DoS allows for an evaluation of properties contributed by different types of molecular motions. We show that this 2PT analysis leads to accurate predictions of entropy and energy of CO2 over a wide range of conditions (from the triple point to the critical point of both the vapor and the liquid phases along the saturation line). This allows the equation of state of CO2 to be determined, which is limited only by the accuracy of the force field. We also validated that the 2PT entropy agrees with that determined from thermodynamic integration, but 2PT requires only a fraction of the time. A complication for CO2 is that its equilibrium configuration is linear, which would have only two rotational modes, but during the dynamics it is never exactly linear, so that there is a third mode from rotational about the axis. In this work, we show how to treat such linear molecules in the 2PT framework.
Resumo:
Common water ice (ice I-h) is an unusual solid-the oxygen atoms form a periodic structure but the hydrogen atoms are highly disordered due to there being two inequivalent O-H bond lengths'. Pauling showed that the presence of these two bond lengths leads to a macroscopic degeneracy of possible ground states(2,3), such that the system has finite entropy as the temperature tends towards zero. The dynamics associated with this degeneracy are experimentally inaccessible, however, as ice melts and the hydrogen dynamics cannot be studied independently of oxygen motion(4). An analogous system(5) in which this degeneracy can be studied is a magnet with the pyrochlore structure-termed 'spin ice'-where spin orientation plays a similar role to that of the hydrogen position in ice I-h. Here we present specific-heat data for one such system, Dy2Ti2O7, from which we infer a total spin entropy of 0.67Rln2. This is similar to the value, 0.71Rln2, determined for ice I-h, SO confirming the validity of the correspondence. We also find, through application of a magnetic field, behaviour not accessible in water ice-restoration of much of the ground-state entropy and new transitions involving transverse spin degrees of freedom.
Resumo:
The enthalpy method is primarily developed for studying phase change in a multicomponent material, characterized by a continuous liquid volume fraction (phi(1)) vs temperature (T) relationship. Using the Galerkin finite element method we obtain solutions to the enthalpy formulation for phase change in 1D slabs of pure material, by assuming a superficial phase change region (linear (phi(1) vs T) around the discontinuity at the melting point. Errors between the computed and analytical solutions are evaluated for the fluxes at, and positions of, the freezing front, for different widths of the superficial phase change region and spatial discretizations with linear and quadratic basis functions. For Stefan number (St) varying between 0.1 and 10 the method is relatively insensitive to spatial discretization and widths of the superficial phase change region. Greater sensitivity is observed at St = 0.01, where the variation in the enthalpy is large. In general the width of the superficial phase change region should span at least 2-3 Gauss quadrature points for the enthalpy to be computed accurately. The method is applied to study conventional melting of slabs of frozen brine and ice. Regardless of the forms for the phi(1) vs T relationships, the thawing times were found to scale as the square of the slab thickness. The ability of the method to efficiently capture multiple thawing fronts which may originate at any spatial location within the sample, is illustrated with the microwave thawing of slabs and 2D cylinders. (C) 2002 Elsevier Science Ltd. All rights reserved.