950 resultados para generalized assignment
Resumo:
In a previous paper a novel Generalized Multiobjective Multitree model (GMM-model) was proposed. This model considers for the first time multitree-multicast load balancing with splitting in a multiobjective context, whose mathematical solution is a whole Pareto optimal set that can include several results than it has been possible to find in the publications surveyed. To solve the GMM-model, in this paper a multi-objective evolutionary algorithm (MOEA) inspired by the Strength Pareto Evolutionary Algorithm (SPEA) is proposed. Experimental results considering up to 11 different objectives are presented for the well-known NSF network, with two simultaneous data flows
Resumo:
The most widely used formula for estimating glomerular filtration rate (eGFR) in children is the Schwartz formula. It was revised in 2009 using iohexol clearances with measured GFR (mGFR) ranging between 15 and 75 ml/min × 1.73 m(2). Here we assessed the accuracy of the Schwartz formula using the inulin clearance (iGFR) method to evaluate its accuracy for children with less renal impairment comparing 551 iGFRs of 392 children with their Schwartz eGFRs. Serum creatinine was measured using the compensated Jaffe method. In order to find the best relationship between iGFR and eGFR, a linear quadratic regression model was fitted and a more accurate formula was derived. This quadratic formula was: 0.68 × (Height (cm)/serum creatinine (mg/dl))-0.0008 × (height (cm)/serum creatinine (mg/dl))(2)+0.48 × age (years)-(21.53 in males or 25.68 in females). This formula was validated using a split-half cross-validation technique and also externally validated with a new cohort of 127 children. Results show that the Schwartz formula is accurate until a height (Ht)/serum creatinine value of 251, corresponding to an iGFR of 103 ml/min × 1.73 m(2), but significantly unreliable for higher values. For an accuracy of 20 percent, the quadratic formula was significantly better than the Schwartz formula for all patients and for patients with a Ht/serum creatinine of 251 or greater. Thus, the new quadratic formula could replace the revised Schwartz formula, which is accurate for children with moderate renal failure but not for those with less renal impairment or hyperfiltration.
Resumo:
Upper bounds for the Betti numbers of generalized Cohen-Macaulay ideals are given. In particular, for the case of non-degenerate, reduced and ir- reducible projective curves we get an upper bound which only depends on their degree.
Resumo:
[spa] Se presenta el operador OWA generalizado inducido (IGOWA). Es un nuevo operador de agregación que generaliza al operador OWA a través de utilizar las principales características de dos operadores muy conocidos como son el operador OWA generalizado y el operador OWA inducido. Entonces, este operador utiliza medias generalizadas y variables de ordenación inducidas en el proceso de reordenación. Con esta formulación, se obtiene una amplia gama de operadores de agregación que incluye a todos los casos particulares de los operadores IOWA y GOWA, y otros casos particulares. A continuación, se realiza una generalización mayor al operador IGOWA a través de utilizar medias cuasi-aritméticas. Finalmente, también se desarrolla un ejemplo numérico del nuevo modelo en un problema de toma de decisiones financieras.
Resumo:
[spa] Se presenta el operador de media ponderada ordenada generalizada lingüística de 2 tuplas inducida (2-TILGOWA). Es un nuevo operador de agregación que extiende los anteriores modelos a través de utilizar medias generalizadas, variables de ordenación inducidas e información lingüística representada mediante el modelo de las 2 tuplas lingüísticas. Su principal ventaja se encuentra en la posibilidad de incluir a un gran número de operadores de agregación lingüísticos como casos particulares. Por eso, el análisis puede ser visto desde diferentes perspectivas de forma que se obtiene una visión más completa del problema considerado y seleccionar la alternativa que parece estar en mayor concordancia con nuestros intereses o creencias. A continuación se desarrolla una generalización mayor a través de utilizar medias cuasi-aritméticas, obteniéndose el operador Quasi-2-TILOWA. El trabajo finaliza analizando la aplicabilidad del nuevo modelo en un problema de toma de decisiones sobre gestión de la producción.
Resumo:
[spa] El índice del máximo y el mínimo nivel es una técnica muy útil, especialmente para toma de decisiones, que usa la distancia de Hamming y el coeficiente de adecuación en el mismo problema. En este trabajo, se propone una generalización a través de utilizar medias generalizadas y cuasi aritméticas. A estos operadores de agregación, se les denominará el índice del máximo y el mínimo nivel medio ponderado ordenado generalizado (GOWAIMAM) y cuasi aritmético (Quasi-OWAIMAM). Estos nuevos operadores generalizan una amplia gama de casos particulares como el índice del máximo y el mínimo nivel generalizado (GIMAM), el OWAIMAM, y otros. También se desarrolla una aplicación en la toma de decisiones sobre selección de productos.
Resumo:
The set of optimal matchings in the assignment matrix allows to define a reflexive and symmetric binary relation on each side of the market, the equal-partner binary relation. The number of equivalence classes of the transitive closure of the equal-partner binary relation determines the dimension of the core of the assignment game. This result provides an easy procedure to determine the dimension of the core directly from the entries of the assignment matrix and shows that the dimension of the core is not as much determined by the number of optimal matchings as by their relative position in the assignment matrix.
Resumo:
In this paper we analyze the time of ruin in a risk process with the interclaim times being Erlang(n) distributed and a constant dividend barrier. We obtain an integro-differential equation for the Laplace Transform of the time of ruin. Explicit solutions for the moments of the time of ruin are presented when the individual claim amounts have a distribution with rational Laplace transform. Finally, some numerical results and a compare son with the classical risk model, with interclaim times following an exponential distribution, are given.
Resumo:
En aquest treball mostrem que, a diferència del cas bilateral, per als mercats multilaterals d'assignació coneguts amb el nom de Böhm-Bawerk assignment games, el nucleolus i el core-center, i. e. el centre de masses del core, no coincideixen en general. Per demostrar-ho provem que donant un m-sided Böhm-Bawerk assignment game les dues solucions anteriors poden obtenir-se respectivament del nucleolus i el core-center d'un joc convex definit en el conjunt format pels m sectors. Encara més, provem que per calcular el nucleolus d'aquest últim joc només les coalicions formades per un jugador o m-1 jugadors són importants. Aquests resultats simplifiquen el càlcul del nucleolus d'un multi-sided ¿¿ohm-Bawerk assignment market amb un número molt elevat d'agents.
Resumo:
En aquest treball demostrem que en la classe de jocs d'assignació amb diagonal dominant (Solymosi i Raghavan, 2001), el repartiment de Thompson (que coincideix amb el valor tau) és l'únic punt del core que és maximal respecte de la relació de dominància de Lorenz, i a més coincideix amb la solucié de Dutta i Ray (1989), també coneguda com solució igualitària. En segon lloc, mitjançant una condició més forta que la de diagonal dominant, introduïm una nova classe de jocs d'assignació on cada agent obté amb la seva parella òptima almenys el doble que amb qualsevol altra parella. Per aquests jocs d'assignació amb diagonal 2-dominant, el repartiment de Thompson és l'únic punt del kernel, i per tant el nucleolo.
Resumo:
Un juego de asignación se define por una matriz A; donde cada fila representa un comprador y cada columna un vendedor. Si el comprador i se empareja a un vendedor j; el mercado produce aij unidades de utilidad. Estudiamos los juegos de asignación de Monge, es decir, aquellos juegos bilaterales de asignación en los cuales la matriz satisface la propiedad de Monge. Estas matrices pueden caracterizarse por el hecho de que en cualquier submatriz 2x2 un emparejamiento óptimo está situado en la diagonal principal. Para mercados cuadrados, describimos sus núcleos utilizando sólo la parte central tridiagonal de elementos de la matriz. Obtenemos una fórmula cerrada para el reparto óptimo de los compradores dentro del núcleo y para el reparto óptimo de los vendedores dentro del núcleo. Analizamos también los mercados no cuadrados reduciéndolos a matrices cuadradas apropiadas.
Resumo:
[spa] En este artículo hallamos fórmulas para el nucleolo de juegos de asignación arbitrarios con dos compradores y dos vendedores. Se analizan cinco casos distintos, dependiendo de las entradas en la matriz de asignación. Los resultados se extienden a los casos de juegos de asignación de tipo 2 x m o m x 2.
Resumo:
[cat] En el domini dels jocs bilaterals d’assignació, es presenta una axiomàtica del nucleolus com l´unica solució que compleix les propietats de consistència respecte del joc derivat definit per Owen (1992) i monotonia de les queixes dels sectors respecte de la seva cardinalitat. Com a conseqüència obtenim una caracterització geomètrica del nucleolus mitjançant una propietat de bisecció més forta que la que satisfan els punts del kernel (Maschler et al, 1979).
Resumo:
[spa] Se presenta el operador OWA generalizado inducido (IGOWA). Es un nuevo operador de agregación que generaliza al operador OWA a través de utilizar las principales características de dos operadores muy conocidos como son el operador OWA generalizado y el operador OWA inducido. Entonces, este operador utiliza medias generalizadas y variables de ordenación inducidas en el proceso de reordenación. Con esta formulación, se obtiene una amplia gama de operadores de agregación que incluye a todos los casos particulares de los operadores IOWA y GOWA, y otros casos particulares. A continuación, se realiza una generalización mayor al operador IGOWA a través de utilizar medias cuasi-aritméticas. Finalmente, también se desarrolla un ejemplo numérico del nuevo modelo en un problema de toma de decisiones financieras.
Resumo:
[cat] Aquest treball tracta d’extendre la noció d’equilibri simètric de negociació bilateral introduït per Rochford (1983) a jocs d’assignació multilateral. Un pagament corresponent a un equilibri simètric de negociación multilateral (SMB) és una imputación del core que garanteix que qualsevol agent es troba en equilibri respecte a un procés de negociación entre tots els agents basat en allò que cadascun d’ells podria rebre -i fer servir com a amenaça- en un ’matching’ òptim diferent al que s’ha format. Es prova que, en el cas de jocs d’assignació multilaterals, el conjunt de SMB és sempre no buit i que, a diferència del cas bilateral, no sempre coincideix amb el kernel (Davis and Maschler, 1965). Finalment, responem una pregunta oberta per Rochford (1982) tot introduïnt un conjunt basat en la idea de kernel, que, conjuntament amb el core, ens permet caracteritzar el conjunt de SMB.