257 resultados para gelation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

SEM observations of low solid content vitrified clay suspensions reveal that clay platelets build porous three-dimensional networks with platelets contacting each other mostly by their edges. To explain this behaviour, which must require long range edge-to-edge (EE) attractive forces, a hydrophobic-like interaction has been proposed. This interaction may be induced by the presence of nano-bubbles existing on the edges of clay crystals which may cause clay particles to flocculate. The following indirect evidence for such hydrophobic behaviour is presented. First, a clay platelet is shown attached to an oil drop by its edge; second, clay flocs were attracted by a vertically placed Teflon strip but not to the hydrophilic mica basal surface; third, a much thicker porous sediment occurred in CO2-saturated water solution compared with vacuum degassed water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drug delivery systems with active targeting ligand provide improved therapeutic efficiency due to the selectivity towards tumor cells. In this paper we prepared drug loaded nanoparticles (NPs) using folate (FA) incorporated chitosan (FA-CS) based on ionic gelation technology. FA-CS NPs were spherical in shape with an average particle size of 100 nm, while 5-fluorouracil (5-FU) loaded NPs became less circular with average particle size of 100-500 nm. NPs made from FA-CS conjugates exhibited improved capability to encapsulate hydrophilic 5-FU. It was found 5-FU distributed in FA-CS NPs in solid solution state. In vitro release results demonstrated the release of 5-FU from FA-CS NPs was more controllable as compared to that of CS NPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rheological properties of a hierarchically structured supramolecular soft material are mainly determined by the structure of its network. Controlling the thermodynamic driving force of physical gels (one type of such materials) during the formation has proven effective in manipulating the network structure due to the nature of nucleation and growth of the fiber network formation in such a supramolecular soft material. Nevertheless, it is shown in this study that such a property can be dramatically influenced when the volume of the system is reduced to below a threshold value. Unlike un-confined systems, the network structure of such a soft material formed under volume confinement contains a constant network size, independent of the experimental conditions, i.e. temperature and solute concentration. This implies that the size of the fiber networks in such a material is invariable and free from the influence of external factors, once the volume is reduced to a threshold. The observations of this work are significant in the control of the formation of fibrous networks in materials of this type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To develop polymeric-ceramic nanocarriers (NCs) in order to achieve oral delivery of the anticancer neutraceutical iron-saturated bovine lactoferrin (Fe-bLf) protein.

Materials & methods: Fe-bLf or paclitaxel (Taxol®) were adsorbed onto calcium phosphate nanocores, enclosed in biodegradable polymers chitosan and alginate. The Fe-bLf or Taxol-loaded NCs indicated as AEC–CP–Fe-bLf or AEC–CP–Taxol NCs, respectively, were made by combination of ionic gelation and nanoprecipitation. Size distribution, morphology, internalization and release profiles of the NCs were studied along with evaluation of in vitro and in vivo anticancer activities and compared with paclitaxel.

Results: AEC–CP–Fe-bLf NCs obtained spherical morphology and showed enhanced endocytosis, transcytosis and anticancer activity in Caco-2 cells in vitro. AEC–CP–Fe-bLf NCs were supplemented in an AIN 93G diet and fed to mice in both prevention and treatment human xenograft colon cancer models. AEC–CP–Fe-bLf NCs were found to be highly significantly effective when given orally, as a pretreatment, 1 week before Caco-2 cell injections. None of the mice from the AEC–CP–Fe-bLf NC-fed group developed tumors or showed any signs of toxicity, while the mice fed the control AIN 93G diet showed normal tumor growth. Fe-bLf or Taxol, when given orally in a diet as nanoformulations post-tumor development, showed a significant regression in the tumor size with complete inhibition of tumor growth later, while intratumoral injection of Taxol just delayed the growth of tumors. The pharmacokinetic and bioavailability studies indicated that nanoformulated Fe-bLf was predominantly present on tumor cells compared to non-nanoformulated Fe-bLf. Fe-bLf-loaded NCs were found to help in absorption of iron and thus may have utility in enhancing the iron uptake during iron deficiency without interfering with the absorption of calcium.

Conclusion: With the promising results of our study, the future potential of NC-loaded Fe-bLf in chemoprevention and in the treatment of human colon cancer, deserves further investigation for translational research and preclinical studies of other malignancies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early stages of the self-assembly of peptide hydrogels largely determine their final material properties. Here we discuss experimental methodologies for monitoring the self-assembly kinetics which underpin peptide hydrogel formation. The early stage assembly of an enzyme-catalysed Fmoc-trileucine based self-assembled hydrogel was examined using spectroscopic techniques (circular dichroism, CD, and solution NMR) as well as chromatographic (HPLC) and mechanical (rheology) techniques. Optimal conditions for enzyme-assisted hydrogel formation were identified and the kinetics examined. A lag time associated with the formation and accumulation of the self-assembling peptide monomer was observed and a minimum hydrogelator concentration required for gelation was identified. Subsequent formation of well defined nano-and microscale structures lead to self-supporting hydrogels at a range of substrate and enzyme concentrations. 1H NMR monitoring of the early self-assembly process revealed trends that were well in agreement with those identified using traditional methods (i.e. HPLC, CD, rheology) demonstrating 1H NMR spectroscopy can be used to non-invasively monitor the self-assembly of peptide hydrogels without damaging or perturbing the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physicochemical and rheological properties of yoghurt made from unstandardised unhomogenised buffalo milk were investigated during fermentation and 28 days of storage and compared to the properties of yoghurt made from homogenised fortified bovine milk. A number of differences observed in the gel network can be linked to differences in milk composition. The microstructure of buffalo yoghurt, as assessed by confocal laser scanning microscopy (CLSM) and cryo scanning electron microscopy (cryo-SEM), was interrupted by large fat globules and featured more serum pores. These fat globules have a lower surface area and bind less protein than the homogenised fat globules in bovine milk. These microstructural differences likely lead to the higher syneresis observed for buffalo yoghurt with an increase from 17.4 % (w/w) to 19.7 % (w/w) in the weight of whey generated at days 1 and 28 of the storage. The higher concentration of total calcium in buffalo milk resulted in the release of more ionic calcium during fermentation. Gelation was also slower but the strength of the two gels was similar due to similar protein and total solids concentrations. Buffalo yoghurt was more viscous, less able to recover from deformation and less Newtonian than bovine yoghurt with a thixotropy of 3,035 Pa.s-1 measured for buffalo yoghurt at the end of the storage, at least four times higher than the thixotropy of bovine yoghurt. While the titratable acidity, lactose consumption and changes in organic acid concentrations were similar, differences were recorded in the viability of probiotic bacteria with a lower viability of Lactobacillus acidophilus of 5.17 log (CFU/g) recorded for buffalo yoghurt at day 28 of the storage. Our results show that factors other than the total solids content and protein concentration of milk affect the structural properties of yoghurt. They also illustrate the physicochemical reasons why buffalo and bovine yoghurt are reported to have different sensory properties and provide insight into how compositional changes can be used to alter the microstructure and properties of dairy products. © 2013 Springer Science+Business Media New York.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Folate-chitosan nanoparticles, co-loaded with 5-fluourouacil (5-FU) and leucovorin (LV) and prepared by ionic gelation technology were physically microencapsulated by enteric polymer using a solvent evaporation method. Average particle size of the microencapsulated particles was in the range of 15 to 35 µm. High drug encapsulation efficiency was obtained for both 5-FU and LV in the microencapsulated particles. Both drugs were in amorphous state in the microencapsulated particles. By enteric coating, excellent pH-dependent release profile was achieved and no drug release was observed in simulated gastric and intestinal fluids. However, when the pH value reached the soluble threshold of Eudragit S-100, a constant and slow drug release was observed. The results indicated that these microencapsulated particles are a promising vehicle for selectively targeting drugs to colon in the chemotherapy of colon cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper compares improvements to the fracture energy and electrical conductivity of epoxy nanocomposites reinforced by one-dimensional carbon nanofibres (CNFs) or two-dimensional graphene nanoplatelets (GNPs). The focus of this investigation is on the effects of the shape, orientation and concentration (i.e. 0.5, 1.0, 1.5 and 2.0 wt%) of nanoscale carbon reinforcements on the property improvements. Alignment of the nano-reinforcements in the epoxy nanocomposites was achieved through the application of an alternating current (AC) electric-field before gelation and curing of the epoxy resin. Alignment of the nano-reinforcements increased the electrical conductivity and simultaneously lowered the percolation threshold necessary to form a conductive network in the nanocomposites. Nano-reinforcement alignment also increased greatly the fracture energy of the epoxy due to a higher fraction of the nano-reinforcement participating in multiple intrinsic (e.g. interfacial debonding and void growth) and extrinsic (e.g. pull-out and bridging) toughening mechanisms. A mechanistic model is presented to quantify the contributions from the different toughening mechanisms induced by CNFs and GNPs to the large improvements in fracture toughness. The model results show that one-dimensional CNFs are more effective than GNPs at increasing the intrinsic toughness of epoxy via void growth, whereas two-dimensional GNPs are more effective than CNFs at improving the extrinsic toughness via crack bridging and pull-out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new route of tethering graphene nanoplatelets (GNPs) with Fe3O4 nanoparticles to enable their alignment in an epoxy using a weak magnetic field. The GNPs are first stabilised in water using polyvinylpyrrolidone (PVP) and Fe3O4 nanoparticles are then attached via co-precipitation. The resultant Fe3O4/PVP-GNPs nanohybrids are superparamagnetic and can be aligned in an epoxy resin, before gelation, by applying a weak magnetic field as low as 0.009 T. A theoretical model describing the alignment process is presented and used to quantify the effects of key parameters on the time needed for the alignment process. Compared to the unmodified epoxy, the resulting epoxy polymer nanocomposites containing randomly-oriented Fe3O4/PVP-GNPs nanohybrids exhibit significantly improved electrical conductivities by up to three orders of magnitude and fracture energies by up to 300%. The alignment of the Fe3O4/PVP-GNPs nanohybrids in the epoxy polymer nanocomposites transverse to the direction of crack propagation further increased the fracture energy by 50%, and the electrical conductivity by seven fold in the alignment direction, compared to the nanocomposites containing randomly-oriented nanohybrids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many challenges have been presented in petroleum industry. One of them is the preventing of fluids influx during drilling and cementing. Gas migration can occur as result of pressure imbalance inside the well when well pressure becomes lower than gas zone pressure and in cementing operation this occurs during cement slurry transition period (solid to fluid). In this work it was developed a methodology to evaluate gas migration during drilling and cementing operations. It was considered gel strength concept and through experimental tests determined gas migration initial time. A mechanistic model was developed to obtain equation that evaluates bubble displacement through the fluid while it gels. Being a time-dependant behavior, dynamic rheological measurements were made to evaluate viscosity along the time. For drilling fluids analyzed it was verified that it is desirable fast and non-progressive gelation in order to reduce gas migration without affect operational window (difference between pore and fracture pressure). For cement slurries analyzed, the most appropriate is that remains fluid for more time below critical gel strength, maintaining hydrostatic pressure above gas zone pressure, and after that gels quickly, reducing gas migration. The model developed simulates previously operational conditions and allow changes in operational and fluids design to obtain a safer condition for well construction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Brazil, several species of scorpions are known to cause accidents which can lead to death, which are mainly belonging to the genus Tityus. The scorpion Tityus serrulatus is the main responsible for more severe cases. Anti-scorpion serums are routinely produced by various institutions, despite their effectiveness, quality and action depends on how quickly treatment is started. Studies have been developed in the search for appropriate technologies to encapsulate and release recombinant or natives proteins capable of inducing antibody production. In this context, chitosan copolymer which can be obtained from the partial deacetylation of chitin or in some microorganisms and it is biocompatible and biodegradable has been widely used for this purpose. This study aimed to search for a system release from chitosan nanoparticles for peptide / protein of the venom of the scorpion T. serrulatus, able to provide a new model of immunization in animals, in order to obtain a potential novel polyclonal serum, anti-venom T. serrulatus. The chitosan nanoparticles were prepared by ionic gelation with polyanion tripolyphosphate (TPP). After standardizing the concentrations of TPP and chitosan was evaluated the efficiency of incorporation of bovine serum albumin (BSA) and scorpion venom, showed particle size compatible with the intended purpose. The particles showed adequate size around 200nm. The crosslinking was confirmed by absorption spectroscopy in the infrared. After verified the high encapsulation efficiency (EE) for acid bicinconínico method (BCA) protein assay and the particle size distribution, the success of the technique was proven and the potential for in vivo application of nanoparticles. The experimental animals were vaccinated and the antibodies measured by ELISA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formulations containing poloxamer 407 (P407), carbopol 934P (C934P), and propolis extract (PE) were designed for the treatment of periodontal disease. Gelation temperature, in vitro drug release, rheology, hardness, compressibility, adhesiveness, mucoadhesion, and syringeability of formulations were determined. Propolis release from formulations was controlled by the phenomenon of relaxation of polymer chains. Formulations exhibited pseudoplastic flow and low degrees of thixotropy or rheopexy. In most samples, increasing the concentration of C934P content significantly increased storage modulus (G'), loss modulus (G ''), and dynamic viscosity (n') at 5 degrees C, G '' exceeded G'. At 25 and 37 degrees C, n' of each formulation depended on the oscillatory frequency. Formulations showed thermoresponsive behavior, existing as a liquid at room temperature and gel at 34-37 degrees C. Increasing the C934P content or temperature significantly increased formulation hardness, compressibility, and adhesiveness. The greatest mucoadhesion was noted in the formulation containing 15% P407 (w/w) and 0.25% C934P (w/w). The work of syringeability values of all formulations were similar and very desirable with regard to ease of administration. The data obtained in these formulations indicate a potentially useful role in the treatment of periodontitis and suggest they are worthy of clinical evaluation. (c) 2007 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to develop multiparticulate therapeutic systems of alginate (AL) and chitosan (CS) containing triamcinolone (TC) to colonic drug delivery. Multiparticulate systems of AL-CS, prepared by a complex coacervation/ionotropic gelation method, were characterized for morphological and size aspects, swelling degree, encapsulation content and efficiency, in vitro release profile in different environments simulating the gastrointestinal tract (GIT) and in vivo gastrointestinal transit. The systems showed suitable morphological characteristics with particle diameters of approximately 1.6 mm. In simulated gastric environment, at pH 1.2, the capsules presented low degree of swelling and in vitro release of drug. A higher swelling degree was observed in simulated enteric environment, pH 7.5, followed by erosion. Practically all the drug was released after 6 h of in vitro assay. The in vivo analysis of gastrointestinal transit, carried out in rats, showed that the systems passed practically intact through the stomach and did not show the same profile of swelling observed in the in vitro tests. It was possible to verify the presence of capsules in the colonic region of GIT. The results indicate that AL-CS multiparticulate systems can be used as an adjuvant for the preparation of therapeutic systems to colonic delivery of drugs. (C) 2010 Elsevier Ltd. All rights reserved.